
 pbsSoftLogic User’s Manual 2019

pbsSoftLogic
User’s Manual

 w w w . p b s c o n t r o l . c o m

Page 1

 pbsSoftLogic User’s Manual 2019

1 – Introduction

2 – pbsSoftLogic Installation

3 – Basic concepts

4 – Function Block programming Language

5 – Quick Startup and logic Simulation

6 – Runtime Kernel for Linux , transferring License to Controller and

Working with Linux

7 – Project Settings facilities

8 – AMS-R3010 RTU Configuration

9 – Modbus Master Configuration and integration with remote I/O

Modules

10- Modbus Slave Configuration

11 – DNP3 Slave Configuration

12 – IEC870-5 Slave (101-104) Configuration

13 – S7 Communication Driver Configuration

 w w w . p b s c o n t r o l . c o m

Page 2

 pbsSoftLogic User’s Manual 2019

14 – SQLite Configuration, RTU local data Archiving and Automatic

synchronization with MS SQL Server

15 – OPC UA Server configuration for RTU

16 – Mobile Networking and GSP Client Driver Configuration

17 – IEC870-5-103 Master Driver Configuration

18 – OPC Client Driver Configuration for Win32 Target

19 - User defined function block by Lua Scripting and C Language

20 – pbsSDK :User defined Communication Driver Development

21 – Standard Function Blocks Definition

w w w . p b s c o n t r o l . c o m

Page 3

 pbsSoftLogic User’s Manual 2019

1 – Introduction
pbsSoftLogic is open RTU/PLC Programming Environment from pbsControl. pbsSoftlogic is developed by
Dot Net technology . pbsSoftLogic development version is running on Windows operating system.

pbsSoftLogic has following specifications :

- Standard Function Block programming Environment
- Lua (scripting Language) is used for user defined Function Blocks development
- Developed application can be run on Embedded Windows , WinCE , QNX and Embedded linux

OS
- Offline simulation of developed application on windows
- More than 300 Ready and tested Function block for easy programming.

For update version of pbsSoftLogic please visit www.pbscontrol.com
Current Version: 3.0 RC2
Date: Sep 2019

 w w w . p b s c o n t r o l . c o m

Page 4

http://www.pbscontrol.com/

 pbsSoftLogic User’s Manual 2019

2 – pbsSoftLogic installation

pbsSoftLogic Engineering is running on any Operating systems which support Dot Net Frame 4.7.1.

You need to install Dot Net Frame 4.7.1 on your machine for proper operation of pbsSoftLogic .

You can download latest pbsSoftLogic from http://www.pbscontrol.com

 Simply unzip file and run VSFBEditor.exe. No need for any installation process.

pbssoftLogic files and directories :

- VSFBEditor.exe Main Application for developing Projects .
- FBLuaEditor.exe User defined Function block editor With Lua Scripting language
- OPCExplorer.exe OPC Configuration file for connecting to OPC servers with Windows Target
- pbsLMP.dll Logic Monitoring Protocol . will use for Logic monitoring in Controller .
- options.xml basic options of pbsSoftlogic .
- cfg Directory : Body definition of Function blocks and Lua Source code .
- doc Directory : user manual of pbsSoftlogic
- LinuxCSrc Directory : Source code of C Function blocks
- Timezone Directory: Time Zone file for Linux controller
- VSLE Directory: default developed application with pbsSoftLogic . you can put application and

its deriver at any location
- VSLELib Directory : Compiled Lua Script will move in this directory for transferring to controller
- PSLERT Win32 Runtime kernel
- SQLite : SQLite database for local RTU data archiving
- Win32Simulation : Logic simulation kernel
- DNPS.exe , IECSlave.exe , MDL1000.exe , MDL2000.exe , ModbusSlave.exe , SQLiteEditor.exe

,MapCsR1cfg.exe : protocol and Modular RTU Editor . You can use these editors or directly
edit xml configuration file for each Modular RTU or protocol.

- Lua52.exe , Luac52.exe Lua Compiler and utility

Other files are system files and should be at PSLE directory .

w w w . p b s c o n t r o l . c o m

Page 5

http://www.pbscontrol.com/

 pbsSoftLogic User’s Manual 2019

 w w w . p b s c o n t r o l . c o m

Page 6

 pbsSoftLogic User’s Manual 2019

In following figure you can see pbsSoftLogic Engineering Environment:

 w w w . p b s c o n t r o l . c o m

Page 7

 pbsSoftLogic User’s Manual 2019

3 – Basic concepts

Writing logic for industrial automation plants and SCADA systems is a critical task. It is not
recommended to use low level language like C/C++ and C# for such projects because of following
reasons :

1- Not reusable
2- Difficult to transfer project to others and train other engineers for continuing project
3- High risk in application runtime for stability and error free
4- Not future proof
5- Getting Long time for project development

Function Block language is a language for control engineers. They can focus on process logic without

Worry about software part. FB is full graphical language with many tested and ready functions inside.

Using function block language has following benefits:

1 – 100% reusable. There are many tested and ready functions that can be used in different projects
with complete document.

2 – It is very easy to train Control and process engineers for using and programming.

3 – pbsSoftLogic is used in many projects and sites in last few years , so there aren’t error in the runtime
and development environment .

4- You can use pbsSoftLogic and Function block language as framework for whole your Automation
Projects. Life time of pbsSoftLogic will be 20 years minimum.

pbssoftLogic is an IDE for developing Function Blocks programs , Simulate , and downloading to Linux
/QNX/Win32 based controllers . You can use Lua Scripting language for developing new FB by yourself.

All FB source code of pbsSoftLogic are open source and are located at \psle\LinuxCSrc and
\psle\QNXCsrc and \psle\Win32CSrc

w w w . p b s c o n t r o l . c o m

Page 8

 pbsSoftLogic User’s Manual 2019

4 – Function Block Programming Language

Main element of a Function Block program is FB (Function Block). In Following you can see a few simple
examples.

Example1:

In this logic, two signals PMP1_STS_RUN and PMP2_STS_RUN are input to OR FB and Output will write
to PUMPING Signal.

Example 2:

In Example 2 , PM1_ActivePower is multiply by 100 , PMP2_Activepower is multiply by 100 and both
results will add together and will write to Power_Instance Signals . (Write on two different sources)

 w w w . p b s c o n t r o l . c o m

Page 9

 pbsSoftLogic User’s Manual 2019

 Example 3:

Main Element of a Function Block Program:

1 – Input /Output Signals: Normally links to Communication Drivers and Local I/O

2 – FB: Ready Function Blocks.

3 – Interconnection between I/O Signals, FBs and between FBs.

4 – Constant signals: different type of Constant Signals: Integer (I), Float (F), Boolean (B), Time (T)

Constant Signal Format: Type # Value.

5-Internal Link Tags: unlimited internal link tag is possible in logic, but each instance should have
different name. Links with same name has same value in logic. LNK and VAR have same usage.

You can see list of all Link Tags in Debug Menu, Link List Item.

 w w w . p b s c o n t r o l . c o m

Page 10

 pbsSoftLogic User’s Manual 2019

By double click on each link item; Logic will focus on Link/VAR Signal. So you can easily browse and check
all link/VAR signals.

LNK/VAR is internal global variable in your project.

6 – Comments: you can put comment everywhere in logic. Drag a Comment element from FBList and

 Drop it in the logic. Then click on Comment and change its content. Comment is like a dynamic size
yellow text box.

By selecting comments items from Debug menu, you can see list of all Comments in the logic.

 w w w . p b s c o n t r o l . c o m

Page 11

 pbsSoftLogic User’s Manual 2019

By Double click on any comment, logic will focus there and you can easily browse all logic by comments.

Function Block Programming Rules:

1 – FB Inputs (Left side) always connect to one source. You can connect one source (I/O Signal, Internal
Link Tag, and Constant) to different FB Inputs; But Multiple Source to One FB Input is not valid.

2 – FB Outputs (Right Side) can be connecting to different Signals. (Not Constant Signals)

3 – There is no limitation on number of FB interconnections level.

4 – Logic execution: each FB has an Execution number. Click on FB and press F4 , you can see FB
properties window . Scroll properties to find ExeSeq .

 w w w . p b s c o n t r o l . c o m

Page 12

 pbsSoftLogic User’s Manual 2019

When you start to develop logic , FBEditor will increase ExeSeq number for each FB that you use
automatically . but you can change its sequence and by this way , you can control execution sequence of
logic . We advise to set all ExeSq numbers manually , because when you copy paste some part of logic ,
FBEditor will put same values for pasted elements . FBEditor will sort all Fbs by ExeSeq number and
compile and make output file by ExeSeq order .

In following sample ExeSeq Number of PulseGen is Bigger than CTU , but Logic will solve without any
problem and only in one RTU Cycle there is no output for CTU FB .

5 – Logic FB Instance name : each FB has FBName and instance name . these two properties are equal by
default . but you can change Instance name to any unique name in your logic . Suppose you are
controlling a Pump by Drive1V2 FB . By changing FB Instancename to “Pump1Mng” , Compiler will use
Pump1Mng as identification of FB at compile time . By default it is using PartID property which is always
unique in the logic.

 w w w . p b s c o n t r o l . c o m

Page 13

 pbsSoftLogic User’s Manual 2019

You can browse logic by FB Instance name from Debug menu, FB Instance List item. By Double clicking
on Instance name, Logic will focus on that part.

Note : if you want to have 100% warm logic update you should use instance name for critical function
blocks .

6 – you can write your logic in multiple Function Block pages . Always First Function Block which is made
by PSLE is main POU (Program Organization Block)

 w w w . p b s c o n t r o l . c o m

Page 14

 pbsSoftLogic User’s Manual 2019

5 – Quick Startup and Logic Simulation
In this part, we will write a simple logic with PSLE and Simulate and run on Linux controller.

Step1: Make a new Application with PSLE. Run VSFBEditor.exe . In File Menu, Select New.

At first step you should make a directory for your project. You can make anywhere in your system with
proper name related to your project. Suppose we will make Quick1 Directory in pbsSoftLogic VSLE
Path.

 w w w . p b s c o n t r o l . c o m

Page 15

 pbsSoftLogic User’s Manual 2019

.

Select a proper name for your MainPOU , I will name MainPOU as Quick1 too .

Click on save button, it will close save form automatically and you are ready for configuration and
programming. You couldn’t close MainPOU Program and it is always open when your project is open.

 w w w . p b s c o n t r o l . c o m

Page 16

 pbsSoftLogic User’s Manual 2019

 w w w . p b s c o n t r o l . c o m

Page 17

 pbsSoftLogic User’s Manual 2019

Step2 : Select your RTU Type . Click on project setting button

pbsSoftLogic will prompt you that there is no any configuration file for this project . Simply Click on OK
Button to open project setting page.

When Project setting page is opened, it will show by default AMS-R3010 RTU as controller.

 w w w . p b s c o n t r o l . c o m

Page 18

 pbsSoftLogic User’s Manual 2019

Open RTU Combo Box you can see different RTU that is supported by pbsSoftLogic . For now use same
AMS-R3010 RTU.

Type RTU IP for example type 192.168.1.213

Keep Logic Scan Time as 100msec. This is loop time for reading All Driver Inputs, Solve Logic and write
Driver Outputs. Every 100 msec above sequence will, but may be whole this sequence only get 2 msec to
finish and 98 msec CPU is sleeping.

Click on save button to save configuration.

Step3: Define Local IO for RTU

Right click In Driver List part and select New Driver Command:

 w w w . p b s c o n t r o l . c o m

Page 19

 pbsSoftLogic User’s Manual 2019

It will show list of Supported Drivers of pbsSoftLogic :

Select Local _IO and select an unique name for driver . (for example LIO)

Click on Make Driver Button. pbsSoftLogic will include AMS-R3010RTU configuration file to your project.

 w w w . p b s c o n t r o l . c o m

Page 20

 pbsSoftLogic User’s Manual 2019

LOCAL_IO is a general driver for modeling hardware functionality of RTU. pbsSoftLogic will make
different Local_IO configuration file based on RTU type .

Right click on LIO Driver and Select Explorer option.

It will open LIO directory in your project:

 w w w . p b s c o n t r o l . c o m

Page 21

 pbsSoftLogic User’s Manual 2019

pbsSoftLogic will make one directory for each Driver in project Directory .

If you open project directory you will see following file configuration :

Quick1.xml: source of your logic

Quick1.cfg: Project Configuration file.

Quick1.lx: Compiled Project Configuration file that is transferred to RTU

Quick1.c11: Compiled Logic that is transferred to RTU

LIO Directory: Directory for Local_IO Driver. Insider LIO directory pbsSoftLogic is make Local_IO.xml file.
For AMS-R3010 RTU Local_IO.xml file is as following:

 w w w . p b s c o n t r o l . c o m

Page 22

 pbsSoftLogic User’s Manual 2019

You should not change this file and only you can use it in your logic.

For detail description of above signals please refer to AMS-R3010 RTU configuration chapter.

 w w w . p b s c o n t r o l . c o m

Page 23

 pbsSoftLogic User’s Manual 2019

Step3 :

In left panel, you can see different ready FB, and in right panel Function Block application area.

Open Timers Group and select PulseGen . Drag and Drop it to program area .

PulseGen is generating continues pulse, with same time duration (Low and High).

When Trg input is changing from low to high (0 to 1), Pulse train will start at Q output with Low and High
Duration equal to Time input.

In FB list panel, drag and drop Inputsignal and connect it to Trg Input. Then Drag and drop OutputSignal
and link it to Q output. Leave Time input without any connection.

 w w w . p b s c o n t r o l . c o m

Page 24

 pbsSoftLogic User’s Manual 2019

When an Input Port is not connecting to any signal, it will take default value that is preset for each FB
(you can change FB Input Default values).

Click on InputSignal which is connected to Trg Input of PulseGen FB . Right click and select Driver Signals
Option :

 w w w . p b s c o n t r o l . c o m

Page 25

 pbsSoftLogic User’s Manual 2019

You can see list of defined driver for this project. Open LIO Driver and Double click on DITag0 Signal.

Name of signal is assigned to Input Signal Box that is connected to Trg Input of PulseGen Function Block.

Name of Signal is combination of Driver Name + “:”+Signal Name

 w w w . p b s c o n t r o l . c o m

Page 26

 pbsSoftLogic User’s Manual 2019

Click on Output Block Box that is connected to Q Output of Function Block.

Click on Save and compile button at top.

It will save and compile your logic .

 w w w . p b s c o n t r o l . c o m

Page 27

 pbsSoftLogic User’s Manual 2019

Step4: simulate your logic.

Click on Simulate button at top.

 Your logic will change like following:

Online Indicator will start to blink and you can see real logic scan time at bottom part of page.

Value of all signals is showing in the link connections between elements.

 w w w . p b s c o n t r o l . c o m

Page 28

 pbsSoftLogic User’s Manual 2019

Right click on LIO:TagDI0 Signal and select Force option :

You can force all Input Signals of Function blocks . It is not forcing LIO:DITag0 Signal , it will force Trg
Input of PulseGen Function block .

Force signal and you can see output Signal is star to toggle between 0 and 1 .

 w w w . p b s c o n t r o l . c o m

Page 29

 pbsSoftLogic User’s Manual 2019

For proper working of Simulator you need to do following configuration :

- To Be sure there are no any removable Media like USB Disk , … to your PC
- Install RAMDisk Driver from pbsSoftLogic \RamDisDrv Directory
- Simulator is using RAM Disk to keep Static data of function blocks.
- Open options.xml file in pbsSoftLogic Directory and set RAMDisk Path TempPath option .

 <Node>

 <Name>ResourcePath</Name>

 <Desc>Resource Directory Path</Desc>

 <Value>e:\Resource</Value>

 </Node>

 <Node>

 <Name>TempPath</Name>

 <Desc>Temp Directory Path</Desc>

 <Value>e:\Temp</Value>

 </Node>

Simulator is runtime kernel of pbsSoftLogic for Win32 . you can see when you click on Simulator button
and task bar a new program will run .

 w w w . p b s c o n t r o l . c o m

Page 30

 pbsSoftLogic User’s Manual 2019

Simulator is located at pbsSoftLogic\ Win32simulation Directory.

When you click Simulator button, pbsSoftLogic will copy Quick1.c11 and Quick1.lx to Win32Simulation
directory and change name to logic.c11 and logic.cfg.

Also pbsSoftLogic will copy all Lua Codes from VSLELib to Win32Simulation\fblib Directory.

Then psleWin32simulation.exe will run by platform. If psleWin32simulation.exe is already running, first
it will close and run it again.

Warm Update and Clod update buttons are not supported for simulation because each time you run
simulator it will run Simulator from scratch.

w w w . p b s c o n t r o l . c o m

Page 31

 pbsSoftLogic User’s Manual 2019

6 – Runtime Kernel for Linux, transferring License to Controller and
working with Linux

In this chapter will talk about runtime structure of pbsSoftLogic inside RTU . pbsSoftLogic runtime
kernel is based on very simple concept .

pbsSLKLX : this is main application in linux which will start automatically when RTU is booted or you
can load it manually for Diagnostic purpose .

Communication Drivers: Different communication drivers which are supported by pbsSoftLogic .

In following figure you can see how above components are communicating with each other.

When you run pbsSLKLX following steps will done in RTU :

- 1- pbsSLKLX will load /home/pbsLX/logic.cfg file . This file contains all defined communication
protocol for active project.

- 2 - pbsSLKLX will load communication driver library in to memory dynamically .

 w w w . p b s c o n t r o l . c o m

Page 32

 pbsSoftLogic User’s Manual 2019

- 3 - pbsSLKLX get Driver parameters from logic.cfg file and pass one by one to Communication
Driver library

- 4 - pbsSLKLX will add Communication Blocks , Slots and Finally Driver Tags
- 5 - pbsSLKLX will call pbsInit Function to initialize Communication Driver
- 6 - pbsSLKLX will repeat steps 2 , 3, 4, 5 for all defined drivers in logic.cfg
- 7 - pbsSLKLX will start to read input Tags for all Communication Drivers by calling pbsReadTag
- 8 - pbsSLKLX solve one time RTU logic
- 9 - pbsSLKLX will write to Communication Drivers all Output Tags by calling pbsWrite method .
- 10 – Repeat Steps 7 , 8 , 9

As it clear from above sequence, Communication Drivers has unified API interface for communication
with pbsSLKLX .

Duration time for executing steps 7 , 8 , 9 is RTU Real Logic Scan Time . You can see Real Logic Scan Time
when you connect to RTU by pbsSoftLogic Engineering . Real Logic Scan Time is shown in bottom of
page at left side. In following figure Real Logic Scan time is 1 mse.

You couldn’t control Real Logic Scan Time , but you can set Logic Scan Time in Project Setting Page .

 w w w . p b s c o n t r o l . c o m

Page 33

 pbsSoftLogic User’s Manual 2019

For above sample Logic Scan Time is 100 msec .

It means every 100 msec , RTU will Read All Defined Driver Inputs (Step 7) , Execute Logic (Step 8)
and Write all Define Driver Outputs (Step 9) . Time for executing Step 7 , 8 ,9 is 1 Msec . So pbsSLKLX
CPU thread is at sleep for 99 msec .

pbsSLKLX has only one thread for Reading Driver Input Tags , Execute RTU logic and Write Driver Output
Tags . But there is no any limitation in Drivers Library to get many CPU threads.

When you reduce Logic Scan Time and make it close to Real Logic Scan Time , then RTU CPU Usage will
increase . So you should select Logic Scan Time Based on your Process Condition and it should be always
more than Real Logic Scan Time.

You can use less than 1 mse for logic scan time , 0.1 or 0.01 msec is also possible to Set .

Please notice that pbsSLKLX Scan Time is different than Communication protocol scan time. You can
Read Modbus Slaves every second , but pbsSLKLX will read/write to driver tags every 10 msec as an
example .

 w w w . p b s c o n t r o l . c o m

Page 34

 pbsSoftLogic User’s Manual 2019

Slave and Master Drivers : There is a conceptual difference in Master Drivers Like Modbus TCP/RTU
Master , IEC101 /103 Master and slave drivers like Modbus TCP/RTU Slave , DNP3 Slave , IEC101/104
Slave .

Master Drivers : In following figure you can see Modbus Master Driver is reading Digital and Analog
Inputs from Slave devices and Write Digital and Analog Output to Slave devices .

pbsSLKLX is Reading input Digital and Analog Tags from Driver and Write Output Digital and Analog Tags
to Driver .

In RTU Logic you should use Input Tags in Left Side of Function Blocks to read from driver and use
Output Tags in Right Site of Function Blocks to Write to Driver .

 w w w . p b s c o n t r o l . c o m

Page 35

 pbsSoftLogic User’s Manual 2019

Slave Drivers: In following figure you can see Modbus Master Devices (HMI Panel, SCADA Software’s) are
read Digital and Analog Tags from Modbus Slave Driver and Write Digital and Analog Output Tags to
Modbus slave driver.

pbsSLKLX is Writing Digital and analog Tags to Modbus Slave Driver (you will update by RTU Logic
Modbus Slave DI , AI Tags for reading by Modbus Master Device) and pbsSLKLX is read Digital and
Analog Outputs from Modbus Slave Driver . These Tags are written by external Modbus Master Device
to Modbus Slave Driver.

In Slave Drivers , you Should use DO , AO tags (Read From Driver) in Left Side of Function Blocks and DI ,
AI Tags (Write to Driver) in right Side of Function Block .

 w w w . p b s c o n t r o l . c o m

Page 36

 pbsSoftLogic User’s Manual 2019

pbsSoftLogic has two parts :

1 - Engineering station. Running on windows Operating system

2 – Runtime Engine. Running on Embedded Linux inside RTU

In this section we will talk about Linux Runtime engine.

You can download latest Linux runtime engine for different different controllers from
http://www.pbscontrol.com page.

pbsSoftLogic Runtime Engine for Linux has following format :

- It locates at /home/pbsLX directory
- /home/pbsLX/pbsSLKLX file is main runtime module. It is an executable Linux file.
- /home/pbsLX/lmp/libpbsLMP.so logic monitoring protocol implementation for linux .
- /home/pbsLX/fblib/libCounters.so , libLogic.so , libMath.so , libProcess.so , libTimers.so linux

implementation of pbsSoftlogic internal Function blocks . For each FB group there is one linux
dynamic library .

- /home/pbsLX/drvlib/mmix/libpbsModbusMLx.so pbsSoftLogic Modbus Master(RTU/TCP)
implementation for linux .

- /home/pbsLX/drvlib/msix/libpbsModbusSLX.so pbsSoftLogic Modbus Slave implementation for
linux .

When you unzip uc7112.rar and w406.rar you can see following directories:

For transferring pbsLX directory to controller do following tasks :

1 – Open project setting page and click on kernel Tab. To be sure that Controller IP address is correct on
General Tab.

2 – Click on Browse Button and select pbsLX Directory that you want to transfer to controller. To be sure
that you select correct runtime Kernel for your controller.

 w w w . p b s c o n t r o l . c o m

Page 37

 pbsSoftLogic User’s Manual 2019

3 – If controller has old Runtime Kernel, first Shutdown RTU Kernel.

4 – Click on Transfer To Controller Button. It will transfer all files and directories to controller but not
changing logic and configuration.

5 – If it is new controller without any kernel, in General Tab click on Set Startup Button to put all
necessary modules in controller startup path.

6 – From general tab Restart Controller.

For each controller, you need to have license file for life time operation. Without License, it will work for
30 Min and you need to restart Controller.

We have following license for controller runtime:

- RTU/PLC functionality and Modbus Master/Slave protocol. This is basic license for each
controller.

- DNP3 Slave License.
- IEC870-5-101/104 Slave License

 w w w . p b s c o n t r o l . c o m

Page 38

 pbsSoftLogic User’s Manual 2019

- BACNET License

You need to purchase each license separately from your supplier or directly through
www.pbscontrol.com web site. You can purchase basic license and purchase other license for your
controller. But your license key is same for each controller.

When you purchase pbsSoftLogic License, you will receive a license key. For activating license do
following steps:

1 – Open project setting page and select License Tab.

2 – To be sure that your PC is connected to Internet and Controller In the same time.

3 – Copy and Paste Controller license Key to License key text Box .

4 – Write some description about your project, Project name, country,

5 – Click on get License from Web Site It will connect to pbscontrol web site and get all purchase licenses

6 – Modbus , DNP3 , IEC and BACNet check boxs will be checked based on your purchase

7 – Click on Copy License to Controller. It will move license file to controller.

8 – From General tab, restart Controller.

If you have a controller and want to check its license, click on Read License from Controller.

 w w w . p b s c o n t r o l . c o m

Page 39

http://www.pbscontrol.com/

 pbsSoftLogic User’s Manual 2019

Working with Linux OS

pbsSoftLogic Runtime kernel is running on Linux Operating system . So you need to have basic
knowledge about Linux . We will review all necessary tools and Linux commands which is used in
pbsSoftLogic in this section .

pbsSoftogic Runtime kernel is developed by ANSI C and it is possible to port it to any Operating system .
We already port it for QNX , Win32 and WinCE .But our default OS is embedded linux .

pbsSoftLogic is transferring Configuration and Logic file to RTU by FTP protocol . So you need to have
FTP Server running inside RTU .

pbsSoftLogic is using Root user to transfer files , so check inside RTU Root user has access in
/etc/ftpuser file . The best way to use FTP is using FileZilla Client Software . This is free utility and you
can get latest version from https://filezilla-project.org/

Because Windows and Linux file format are not identical, so you need to use intelligent Editor like
Notepad++ to edit Linux Configuration files in Windows and writing again files to linux . Download
Notepadd++ from https://notepad-plus-plus.org/

pbsSoftLogic is using Telnet to set Project setting like RTU Date and time , Restarting RTU , … . So you
need to have running Telnet Server inside RTU.

For windows engineering station you need to enable Telnet Client utility. It is located in Control Panel
/program and Features /Turn Windows Features On or Off.

With telnet utility you can connect to RTU by TCP/IP network and manage RTU or change configuration
remotely . Telnet is command based like old MS DOS command prompt .

 w w w . p b s c o n t r o l . c o m

Page 40

https://filezilla-project.org/
https://notepad-plus-plus.org/

 pbsSoftLogic User’s Manual 2019

In windows Engineering Station open command window and execute telnet command with RTU IP
Address as following:

By default user name and password of pbsSoftLogic based RTUS is root, root.

You can change password of root user by passwd command in linux .

 w w w . p b s c o n t r o l . c o m

Page 41

 pbsSoftLogic User’s Manual 2019

You can change linux directory by cd command:

You can see list of files by ls command:

You can see list of running process by ps aux command:

Pbs aux will show all process that is running in RTU. But if you are looking for a specific process you can
use grep as above example.

Any process in linux has an ID . in above example pbsSLKLX ID is 495 .

You can kill process by its ID with kill command as following :

Or ou can kill process by its name with pkill command:

 w w w . p b s c o n t r o l . c o m

Page 42

 pbsSoftLogic User’s Manual 2019

You can see list of running process based on CPU and Memory usage by top command:

You should stop top command by presseing ctrl+c keys.

If you want to run a program from current directory you should use ./ to run application .

If you use & after program name , application will run in background and you have still Telnet
command control .

 w w w . p b s c o n t r o l . c o m

Page 43

 pbsSoftLogic User’s Manual 2019

For deleting files you can use rm command:

In above example pbsSoftLogic , Logic and hardware configuration files are removed .

For making a new directory you can use mkdir command.

When you copy an exactable file to RTU and wants to run it , you need to make it as exactable by chmod
command :

If you want to see RTU hardware information you can use /proc directory files:

 date command will show or set current Date Time of RTU :

 w w w . p b s c o n t r o l . c o m

Page 44

 pbsSoftLogic User’s Manual 2019

Uptime shows for how long RTU is not restarted.

You can see flash memory and mount derives status by df –h command

You can see memory status by cat /proc/meminfo command

 w w w . p b s c o n t r o l . c o m

Page 45

 pbsSoftLogic User’s Manual 2019

Working with FileZilla

You can use FileZilla client utility to explore and edit RTU Files and directories.

Download filezilla from https://filezilla-project.org/

Run filezilla client you will see following page :

Type RTU IP at host field. Type root and root password in user name and password fields .

All RTU directories are showing at right panels and your PC directories at left s panels.

Double click on home directory. You will go inside home directory. Double click on pbsLX . pbsLX
directory is runtime kernel of pbsSoftLogic for Linux Operating system .

 w w w . p b s c o n t r o l . c o m

Page 46

https://filezilla-project.org/

 pbsSoftLogic User’s Manual 2019

If you install debian X86 Linux on your pc over VMWare or Virtual Box, then you can easily use
pbsSoftLogic Debian X86 Runtime and test all functionalities of pbsSoftLogic on your PC.

pbsSoftLogic Kernel for UNO1252G is Debian Runtime for X86 CPU .

Note : for transferring files between Windows and Linux Systems , always set Transfer File Type to
Binary. you can find this option in Edit Menu , Setting menu and Transfers Segment .

By default it is set to “Auto” that is damaging Linux files at transfer time from Windows to RTU.

For editing RTU configuration files in windows you need to use NotePad++ Editor to not damage Text file
format when transfer to windows System .

Install NotePad++ utility from https://notepad-plus-plus.org/

At first time that you View/Edit any Linux Configuration file , Filezilla will ask you for Custom Editor .

In this Stage set Nodepad++ as default editor in Filezilla . This will change File Editing Option in Setting
page as following :

 w w w . p b s c o n t r o l . c o m

Page 47

https://notepad-plus-plus.org/

 pbsSoftLogic User’s Manual 2019

For changing Network Interfaces in RTU , View/Edit /etc/network/interfaces file .

For transferring files from RTU to Windows, Select File, Right click on name of File or Directory and run
“Download” command.

You can delete or Rename files inside RTU by selecting file, right click on name of file and select Delete
or Rename Commands.

 w w w . p b s c o n t r o l . c o m

Page 48

 pbsSoftLogic User’s Manual 2019

7 – Project Settings facilities

There are many facilities in setting page in pbsSoftLogic Editor.

Open Setting Page you can see following tabs:

- General
- Time Setting
- LAN Setting
- Stats
- License
- Kernel

General Tab: In This page you can set following parameters:

- Logic Scan time (Msec)
- Controller Type
- Watch Dog Value in sec , if Value is 0 , DWT is disabled
- Controller IP address
- Communication Drivers
- Restart Controller
- Delete Logic
- Delete Configuration
- Set Startup: will set all necessary modules in Startup path of controller. For a new controller

before running any Commands in setting page, you need to set Startup and restart controller
manually.

-

 w w w . p b s c o n t r o l . c o m

Page 49

 pbsSoftLogic User’s Manual 2019

Time Setting:

Set Controller Time Zone: Select your location from list box, and click on Change TimeZone .

Read Controller Time : Will read current Date time and time Zone of controller .

Set Time : will set Controleller time from NTP Server , it can be a computer on the network or any Time
web site . But controller should connect to Internet.

Set Controller Time with PC : It will set Controller time from PC that is running pbsSoftLogic .

LAN Settings:

 w w w . p b s c o n t r o l . c o m

Page 50

 pbsSoftLogic User’s Manual 2019

Read LAN Setting: It will read current LAN Setting from Controller.

Write LAN Settings: it will Write LAN settings to controller

Read LAN Configuration: it will read current ALN configuration fro controller.

For changing controller IP address:

1 – Read LAN Settings

2 – Change IP address for each LAN port and other settings

3 – Write New Settings to Controller.

Controller Stat tab:

Read CPU Information: It will Read Hardware Information from controller

Read memory information: shows detail of memory usage of controller

 w w w . p b s c o n t r o l . c o m

Page 51

 pbsSoftLogic User’s Manual 2019

Read Version: Read Controller Linux Version, GCC compiler version

Read Flash Information:

 w w w . p b s c o n t r o l . c o m

Page 52

 pbsSoftLogic User’s Manual 2019

Read Free Memory:

 w w w . p b s c o n t r o l . c o m

Page 53

 pbsSoftLogic User’s Manual 2019

Usage: this is equal to top command in Linux .

 w w w . p b s c o n t r o l . c o m

Page 54

 pbsSoftLogic User’s Manual 2019

8 – AMS-R3010 RTU Configuration

AMS-R3010 RTU is a common product between Alborz Micro System (AMS) and pbsControl. Hardware is
manufactured by AMS and it is powered by pbsSoftLogic. AMS-R3010 RTU supports all pbsSoftLogic
protocols. See datasheet and user manual for more detail. (http://www.alborzmicrosystem.com/ams-
rtu3000/)

Local IO configuration:

For using AMS-R3010 RTU resources, you need to add Local_IO driver to project. Local_IO controls LEDs,
Watch Dog, Local Digital Inputs , Analog Inputs , Digital Outputs and temperature Inputs . You can make
3G Modem Off / On by Local _IO Tags in your logic.

 w w w . p b s c o n t r o l . c o m

Page 55

http://www.alborzmicrosystem.com/ams-rtu3000/
http://www.alborzmicrosystem.com/ams-rtu3000/

 pbsSoftLogic User’s Manual 2019

When you add Local_IO to your project, pbsSoftLogic will define following configuration file in driver
directory.

SYS.Reset : when change from 0 to 1 in logic , it will restart RTU

SYS.3GmodemOn : When changed from 0 to 1 , will make 3G Modem On , when changed from 1 to 0 ,
will make 3G modem off .

SYS.3GModemsignallevel: shows GPRS/3G Signal level in percentage

SYS.3GConnected: When value is 1 , it shows 3G Modem Got valid IP address from Mobile Network
.This Signal is checking every Minute .

 SYS.3GModemSecIP1 , SYS.3GModemSecIP2 , SYS.3GModemSecIP3, SYS.3GModemSecIP4 :

This is second Virtual IP address for 3G Modem. In above example 3G modem Second IP is 192.168.1.15

SYS.Temp1, SYS.Temp2: shows DS18b20 Digital Temperature sensor value.

 w w w . p b s c o n t r o l . c o m

Page 56

 pbsSoftLogic User’s Manual 2019

SYS.CNTTimer : four DI channels of AMS-R3010 RTU can be used as counter .SYS.CNTTime is base timer
for doing counting in IO CPU . it’s unit is msec .

SYS.AORange : AMS-R3010 RTU has one AO channel as option .SYS.AORange shows AO Signal Range as
following :

SYS.AORange = 1 , 4~20 mA

SYS.AORange = 2 , 0~20 mA

SYS.Buzzer : When changed to 1 in logic will activate RTU buzzer .

SYS.IOScan: this parameter is used in pbsSoftLogic Local IO Driver for AMS-R3010 RTU to read/Write
Local I/Os of RTU. Typical value is 100 msec .

SYS.Total1 , 2 , 3, 4 : Shows Total Pulse counted for DI channels 1 ,2,3 and 4 .

SYS.Total1RST , Total2RST , Total3RST , Total4RST: When changed from 0 to 1 in logic , it will reset
SYS.Total1 , SYS.Total2, SYS.Total3 and SYS.Total4 values .

SYS.ChatterFilterCount , SYS.ChatterFilterBaseTimeMS,SYS.ChatterFilterFreezeTimeMS

AMS-R3010 RTU has built in Chatter Filter for DI channels. Chatter filter calculation is handling in IO CPU
.But Parameter should pass from Local IO Driver. Typical value for chatter filters parameters:

ChatterFilterCount = 10

ChatterFilterBaseTime = 1000msec

ChatterFilterFreezeTime = 2000 msec

When DI signal is changed for 10 times (ChatterFilterCount) in 1000 msec (ChatterFilterBaseTime)
then DI value will freeze for 2000 msec (ChatterFilterFreezeTime)

-When chatter happening bit 7 of DITagx will set to 1

 - When there is no chattering bit 7 of DITagx will set to 0

DITagX Value:

- If Signal is 0 and Chatter happened 128
- If Signal is 1 and Chatter happened 129
- If Signal is 0 and Chatter not happened 0
- If Signal is 1 and Chatter not happened 1

w w w . p b s c o n t r o l . c o m

Page 57

 pbsSoftLogic User’s Manual 2019

AITag0 , AITag1 , AITag2 , AITag3 : Shows value of Analog input Signals

Analog input in AMS-R3010 RTU has 12 bit resolution. You can set AI Range by Switches in back side of
RTU.

If Analog Input Signal is set to Voltage mode, then Value of Signal is changing between 0 to 4096. You
can use Scale Function block for scaling signal to actual value.

If Analog Input Signal is set to Current Mode then 0 to 20 mA will map to 0 to 3940. For scaling you can
use scale Function block for 0~20 mA and 4~20 mA as following samples :

 w w w . p b s c o n t r o l . c o m

Page 58

 pbsSoftLogic User’s Manual 2019

DITag0 to DITag7 : Shows Value of Digital Input Signals with Chatter Filter Status Signal

DOTAg0 , DOTag1 , DOTAg2 and DOTag3 : Read/Write DO signals in logic .

CNTTag0 , CNTTag1 , CNTTag2 , CNTTag3 : Shows Counter Value of four DI channels .Maximum you can
count 1 KHz Pulses .

 AOTag0: Read/Write Value of Analog Output Signal by logic .

Changing LAN Settings:

For changing LAN Settings you can use pbsSoftLogic. Open project Option page and select LAN Setting
Tab:

AMS-R3010RTU eth0 (LAN) port default setting is 192.168.1.137 (like above page) or it is dhcp .

 w w w . p b s c o n t r o l . c o m

Page 59

 pbsSoftLogic User’s Manual 2019

Click on Read LAN setting Button, it will show all LAN setting of AMS-R3010RTU. eth0 is name of RTU
LAN port.

Change setting as following for dhcp configuration:

Change settting as following for Static IP configuration:

After changing settings, click on Write LAN setting button. When you restart RTU, it will get new IP
setting.

Click on Read LAN Configuration, you can see all LAN configuration of RTU(it is equal to ifconfig
command of linux)

If 3G modem is ON and connected to network then you can see ppp0 in list of TCP/IP

 w w w . p b s c o n t r o l . c o m

Page 60

 pbsSoftLogic User’s Manual 2019

Setting GPRS/3G Modem Parameters:

AMS-R3010RTU has a built in 3G Modem for communication with master SCADA . You can make
modem Off/On from logic by help of SYS.3GModemOn Local_IO signal .

When you set SYS.3GModemOn to 1 , it will make Modem On . Net LED will start to blink.

When you set SYS.3GModemOn to 0 , it will make modem off .

When Modem is On and connected to network , you can see configuration by clicking on Read
Configuration Button . ppp0 is port name for 3G modem .

For setting APN name, select GPRS-3G tab:

In above page change rightel APN name to your service provider name and to be sure that connect
command to modem is *99#.

After Settings changed, click on Write 3G Settings and restart RTU.

3G Communication Notes:

- If you only have dynamic IP address for RTUs , then you can use GSPClinet driver to
communicate with Master SCADA (You need to have one Fix and valid IP address for SCADA
Master)

 w w w . p b s c o n t r o l . c o m

Page 61

 pbsSoftLogic User’s Manual 2019

- By using SQLite Driver and usig MS SQL Server automatic data synchronization, you can use
dynamic IP address for RTUs and again you need one Fixed and valid IP address for SQL Server in
Master control room.

- Other protocols like Modbus TCP, DNP3, IEC104, OPC UA they need static IP address for all
RTUs.

Updating AMS-R3010 RTU Runtime Kernel:

- Download latest Runtime kernel from www.pbscontrol.com web site
- Run telnet and connect to RTU . by default User name and password is root ,root.

- go to /home/pbsLX and remove logic.cfg and logic.c11 files by rm command

- restart RTU by reboot command

-
- again connect to RTU by telnet and kill pbsSLKLX by pkill command

 w w w . p b s c o n t r o l . c o m

Page 62

http://www.pbscontrol.com/

 pbsSoftLogic User’s Manual 2019

- run ps aux command and check is there OpenOPCUaCoreServer program in program list , If

exist kill it by Process ID

-

-
- If OpenOpcUaCioreServer is exist kill it by ID , in above example Process ID is 454
- Check that both pbsSLKLX and OpenOpcUaCoreServer is not in task List .
- run Filezilla and delete /home/pbsLX directory

-
- copy new pbsLX directory to /home/pbsLX

 w w w . p b s c o n t r o l . c o m

Page 63

 pbsSoftLogic User’s Manual 2019

-
- transfer your logic and configuration
- restart RTU

For Proper setting of Filezilla please refer to chapter 11 . Otherwise you may
damage RTU

 w w w . p b s c o n t r o l . c o m

Page 64

 pbsSoftLogic User’s Manual 2019

OpenVPN client on AMS-R3010 RTU

AMS-R3010 RTU Operating system is Standard Debian Linux .We installed before OpenVPN
Package on all RTUs , but you can install by following steps on RTU :

- connected AMS-R3010 RTU to Internet (Change Its IP Address to DHCP and connect it
to a Internet Router with DHCP Server functionality)

- Connect to RTU by telnet and run “apt-get install openvpn “ command . It will
download and install openvpn package from Debian Repository .

- If openvpn package installed before and it is updated you will see following message :

-
- Following files will be installed in RTU :

-
-

 w w w . p b s c o n t r o l . c o m

Page 65

 pbsSoftLogic User’s Manual 2019

Setting symmetric key encryption in both side

You need to provide encryption key for RTU to connect with Server. Same key file should be
used in server.

In windows make a new key file with following command:

openvpn.exe --pause-exit --verb 3 --genkey --secret "C:\OpenVPN\config\key.txt"

Before running above command you should install openvpm on your windows station. Please
look at www.openvpn.net for getting openvpn for windows.

By filezilla transfer openvpn sample configuration file from C:\Program Files\OpenVPN\sample-
config and generated key file to to AMS-R3010RTU to /home/openvpn directory.

You need to set three parameters in sample configuration file to connect to openvpn server:

 -remote : Real IP address of Server .

-ifconfig : Virtual IP address of RTU

- secret : put path of key file

For making connection to server only run openvpn with following command:

 openvpn --config sample.ovpn

If server is configured properly then RTU will connect to server and you can see a new virtual IP
address is included in RTU . use ifconfig command to check interface :

 w w w . p b s c o n t r o l . c o m

Page 66

http://www.openvpn.net/

 pbsSoftLogic User’s Manual 2019

 tap0 is new virtual interface for RTU . tap0 is like a normal eth0 or ppp0 interface and you can
use it in pbsSoftLogic for doing protocol configuration .

 w w w . p b s c o n t r o l . c o m

Page 67

 pbsSoftLogic User’s Manual 2019

Setting X509 Certificate

For connection of AMS-R3010 RTU to an OpenVPN Master by X509 certificate you
need to get following files from OpenVPN Master configurator Team for your
RTU:

XXXX.crt signed Certificate

XXXX.Key private RSA key of RTU

Ca.key the key to CA

Make a directory in /home/openvpn and copy above files by filezilla to
/home/openvpn directory .

 w w w . p b s c o n t r o l . c o m

Page 68

 pbsSoftLogic User’s Manual 2019

Changing IP address by FileZilla :

- Run filezilla client software and connect to RTU . default user and pass is root ,root
- View/edit /etc/network/interfaces file by notepad ++ utility

-
- Change IP address for static as following for eth0 port :

-
- Save file and exit notepad++
- If you want to change IP to dhcp change it as following :

-

 w w w . p b s c o n t r o l . c o m

Page 69

 pbsSoftLogic User’s Manual 2019

- Confirm write to RTU in filezilla software .

-
- When using filezilla always check that file transfer is set in Binary . otherwise filezilla will damage

linux file in transfer .
- For editing linux file always use Notepad+ , otherwise when you edit files in windows it will

damaged file by simple editor like notepad .

 w w w . p b s c o n t r o l . c o m

Page 70

 pbsSoftLogic User’s Manual 2019

9 – Modbus Master Configuration and integration with remote I/O
Modules
PbsSoftLogic supports Modbus Master Driver for communication with I/O Modules and other Modbus
Slave Devices. You can set modbus master driver communication parameter from project setting page.

In project setting page, you can see list of configured drivers for your logic.

Right click on driver list, you can add a new driver or explore defined driver.

For defining a new Modbus Master Driver, right click on Driver list and select New Driver.

In new driver page, select communication protocol, Type Driver Name and select Driver instance.

Driver : pbsSoftLogic supports many protocols . Select ModbusMaster for Modbus Master protocol.

 w w w . p b s c o n t r o l . c o m

Page 71

 pbsSoftLogic User’s Manual 2019

Name: Unique Driver Name.

Instance = Instance number for each type of Driver. If you have two Modbus Master Network in project ,
then you need to define two ModbusMaster Driver with Different name and different instance number.
Look at following example, IA240 should connect to I/O Modules and Power monitor network by two
different Modbus Master networks.

Configuration for Modbus Master Driver for I/O Modules:

 w w w . p b s c o n t r o l . c o m

Page 72

 pbsSoftLogic User’s Manual 2019

Configuration for Modbus Master Driver for Power Monitor Devices:

Click on Make Driver button. pbsSoftlogic will make separate directories with same name of Driver at
logic path .

Following items are adding to Driver list in setting page:

 w w w . p b s c o n t r o l . c o m

Page 73

 pbsSoftLogic User’s Manual 2019

Right click on IO_Drv and select explorer. pbsSoftLogic will open IO_Drv directory .

Three files are generated by pbsSoftlogic at this directory.

Options.xml : communication parameter . Like Serial Port, Baud rate …

ModbusBlocks.xml : Modbus Block Definitions

ModbusTags.xml : Modbus Tags Definitions

Edit options.xml file. You can set following parameters for ModbusMaster Driver. Each XML node has a
name (Don’t change it), Desc (Don’t change it) and Value (Set based on Description)

 <Node>

 <Name>PhysicalLayer</Name>

 <Desc>RS232 , RS485 , RS424 , TCP</Desc>

 <Value>RS232</Value>

 </Node>

PhysicalLayer : For Modbus RTU Select one of RS232 , RS485 and RS422 . For ModbusTCP select TCP

 <Node>

 <Name>COMPort</Name>

 <Desc>Serial Port for Communication 1,2,3,4,5,...</Desc>

 <Value>1</Value>

 </Node>

COMPort :will be used for ModbusRTU protocol .

 <Node>

 <Name>BaudRate</Name>

 <Desc>9600,19200,36400,52700,115200</Desc>

 <Value>9600</Value>

 </Node>

BaudRate :will be used for ModbusRTU protocol .

 <Node>

 <Name>DataBit</Name>

 <Desc>7,8</Desc>

 <Value>8</Value>

 </Node>

 w w w . p b s c o n t r o l . c o m

Page 74

 pbsSoftLogic User’s Manual 2019

DataBit :will be used for ModbusRTU protocol .

 <Node>

 <Name>StopBit</Name>

 <Desc>1,2</Desc>

 <Value>1</Value>

 </Node>

StopBit :will be used for ModbusRTU protocol .

 <Node>

 <Name>Parity</Name>

 <Desc>None,Even,Odd</Desc>

 <Value>None</Value>

 </Node>

Parity :will be used for ModbusRTU protocol .

 <Node>

 <Name>Instance</Name>

 <Desc>Instance</Desc>

 <Value>1</Value>

 </Node>

Instance: Driver Instance Number.

 <Node>

 <Name>TCPPort</Name>

 <Desc>TCPPort</Desc>

 <Value>502</Value>

 </Node>

TCPPort: ModbsuTCP Port number. Default Value 502

 w w w . p b s c o n t r o l . c o m

Page 75

 pbsSoftLogic User’s Manual 2019

 <Node>

 <Name>ContPoll</Name>

 <Desc>Continous polling of Slaves , 1= Enable , 0= Poll Slave by System.Poll Signal</Desc>

 <Value>0</Value>

 </Node>

ContPoll: This is used for controlling Modbus Slave Device Polling time .

If ContPoll=1 , then RTU will poll slaves permanently

If ContPoll=1 RTU will poll Slaves based on Value of SYS.Poll Signal .

-When SYS.Poll is 1 in your logic , RTU will poll Slaves

-When SYS.Poll is 0 in your logic , RTU not polling Slaves

WakeUpString : Some Modbus Slaves (Specially in Gas Distribution SCADA) start to communicate with
RTU if they receive wakeup string . Wakeup string has following format: x,x,x,x,x

X is a decimal number and separated by ,

Example: 255,255,255,255,255

If WakeUpString is Blank , then it is disabled in driver.

WakeUpString and ContPoll should use with each other . for using WakeUpString you should set
ContPoll to 0 and control Slave Polling in your logic . Every time SYS.Poll is changed from 0 to 1 , WakeUp
String is send to Slave device .

There is a specific Function Block in Process Group (Scheduler) . you can use this FB to control Slave
Device Polling .

w w w . p b s c o n t r o l . c o m

Page 76

 pbsSoftLogic User’s Manual 2019

 ModbusBlocks.xml : pbsSoftlogic Modbus modeling is based on Block Concept.

We start with a simple example to show concepts of Block. Suppose we want to configure Modbus
network for following system:

ModbusBlocks.xml for above configuration:

 w w w . p b s c o n t r o l . c o m

Page 77

 pbsSoftLogic User’s Manual 2019

Block Name = Unique name of Block.

Type: Block Type

 BI = DI: Digital Input = Modbus Input status (Read from Slave) Send FC = 2

 BO= DO: Digital Output = Modbus Coil(Write to slave) , Send FC = 5

 BOS=DOS: Digital Output Status = Modbus Coils Status (Read from Slave) Send FC = 1

 AI: Analog Input = Modbus input Register (2 bytes , Signed) (Read from Slave) Send FC = 4

 AO: Analog Output = Modbus Holding Register (2 bytes , Signed) (Write to slave) Send FC = 6

 AOS: Analog Output Status = Modbus Holding Register status (2 bytes , Signed) (Read from
Slave) Send FC = 3

 FI : Float Input . use same Address Space of AI . Each FI tag is getting two AI register . (4 Bytes)
(Read from Slave) Send FC = 4

SFI : Swap Float Input . use same Address Space of AI . Each SFI tag is getting two AI register
(Read from Slave) Send FC = 4

 LI : Long Input . use same Address Space of AI . Each LI tag is getting two AI register . (4 bytes
, Signed) (Read from Slave) Send FC = 4

SLI : Swap Long Input . use same Address Space of AI . Each SLI tag is getting two AI register .
(Read from Slave) Send FC = 4

FO : Float Output . use same Address Space of AO . Each FO tag is getting two AO holding
register . (Write to slave) Send FC = 16

SFO : Swap Float Output . use same Address Space of AO . Each SFO tag is getting two AO
holding register . (Write to slave) Send FC = 16

FOS : Float Output Status . use same Address Space of AO . Each FOS tag is getting two AO
holding register . (Read from Slave) Send FC = 3

SFOS : Swap Float Output Status . use same Address Space of AO . Each SFOS tag is getting two
AO holding register . (Read from Slave) Send FC = 3

LO : Long Output . use same Address Space of AO . Each LO tag is getting two AO holding
register . (Write to slave) Send FC = 16

SLO : Swap Long Output . use same Address Space of AO . Each SLO tag is getting two AO
holding register . (Write to slave) Send FC = 16

w w w . p b s c o n t r o l . c o m

Page 78

 pbsSoftLogic User’s Manual 2019

LOS : Long Output Status . use same Address Space of AO . Each LOS tag is getting two AO
holding register . (Read from Slave) Send FC = 3

SLOS : Swap Lang Output Status . use same Address Space of AO . Each SLOS tag is getting two
AO holding register . (Read from Slave) Send FC = 3

SYS: Internal for pbsSoftLogic . Can be used for reading status of communication. It has 4 Signal:
Online : Shows Slave is Working properly and answering to RTU Request

SendNum : Number of Send request from RTU to Slave . It is changing from 0 to 32000

RecNum: Number of Recived messages from Slave . It is changed between 0 to 32000

Poll : When ConPoll is equal to 0 , then Driver is polling Slaves based on value of Poll Signal .

SlaveID = ID of Slave Device.

IP = IP address of Slave Device. Will use for ModbusTCP network.

StartAddress = Start Address of Modbus Block . For Digital (Bit) and for analog (Word)

Count = Channel Count , for FI , LI , SFI , SLI , FO,LO,SFO,SLO,… pbsSoftLogic Kernel will automatic read
double register or Holding register .

Wait = Time for driver to wait for getting answer from Slave Device.

Enable = It is Enable or Not. If it is not enable, it is not polling by driver.

For SYS Block type, Start Address is dummy and it is not use by driver. So always put it 100. If you have
another block with same start address, it is not making any conflict.

ModbusBlocks.xml file for ModbusTCP :

w w w . p b s c o n t r o l . c o m

Page 79

 pbsSoftLogic User’s Manual 2019

ModbusBlocks.xml file for above configuration:

Modbus Master Driver is polling Devices based on Modbus Block File. (For ModbusRTU and ModbusTCP)

For Above ModbusBlocks.xml file , Modbus Driver will do following sequence :

1- Send DI1 Block , Update Diag1 Send Counter
2- Wait for 200 msec
3- Get Answer and update Modbus Tags , Update Diag1 Rec Counter , Diag1.ErrorCounter = 0 ,

Diag1.Online = 1
4- If There is no answer from Device Increase Diag1.ErrorCounter , if it Is more than 3 , Make

Device offline Diag1.Online = 0

 w w w . p b s c o n t r o l . c o m

Page 80

 pbsSoftLogic User’s Manual 2019

5- Check Write Queue for Writing on DO or AO Blocks , If there is any item in Write Queue , Write
it to Device otherwise send Request for Next Block

6- Send AI1 Block , Update Diag1.SendNum
7- Wait for 200 Msec
8- Get Answer and update Modbus Tags , Update Diag1 Rec Counter , Diag1.ErrorCounter = 0 ,

Diag1.Online = 1
9- If There is no answer from Device Increase Diag1.ErrorCounter , if it Is more than 3 , Make

Device offline Diag1.Online = 0
10- Check Write Queue for Writing on DO or AO Blocks , If there is any item in Write Queue , Write

it to Device otherwise send Request for Next Block
11- Repeat Steps 1 to 10 for Device 2.
12- Repeat Steps 1 to 10 for Device 3.

Scan Time Calculation: for above configuration Scan time for whole signals will be calculate as
following:

200(DI1)+50+200(AI1)+50+

200(DI2)+50+200(AI2)+50+

200(DI3)+50+200(AI3)+50 = 3000 msec = 3 sec . (if there is no write command)

If you want to reduce scan time, you can increase BaudRate and reduce Block Wait time.

Or you can separate Modbus Network to two or three separate network.

ModbusTags.xml : All Modbus Tags will define in this file . FBEditor used this file for accessing tags.

Modbus Tag has following format In ModbusTags,xml file :

w w w . p b s c o n t r o l . c o m

Page 81

 pbsSoftLogic User’s Manual 2019

 Blockname : Same Block name in ModbusBlocks.xml

Address = Modbus Tag Address. Start from 0. No need to Write like Modbus Format (like 10001) . Just
write address of Tag . If Block Is starting by 4096 , then you need to start Tag Address from 4096 and
add one by one all tags . Please define all Tags for a block .

Name = Modbus Tag Name . should be unique for Modbus Master Driver.

For All other salve drivers (Modbus, DNP3 and IEC8705) Tag Name should be unique .

For Diag Block you need to define following tags :

First tag is Online . If device is answer to Driver request its value is 1 otherwise it is 0.

sendNum : Number of Send Request by driver . Maximum value is 10,000

RecNum : Number of received Answer to driver . Maximum value is 10,000

You can use above tags like normal Modbus Tag in your logic.

 w w w . p b s c o n t r o l . c o m

Page 82

 pbsSoftLogic User’s Manual 2019

Number of Modbus Master Driver for each controller : 8 Instance

Number of Modbus tags for each Instance: 1024

Number of Modbus Blocks for each instance: 64

Number of Modbus Devices for each instance: 32

Note : it is recommended that first using Modbus Tester utility Like Modscan (https://www.win-
tech.com/html/modbus1.htm) to find detail of Modbus Tags address inside Slave devices (Power
meter , IO Modules , SoftStarter , Flow Computers , …) and then configure pbsSoftLogic Modbus Master
Blocks parameters .

Normally when you read /write a Modbus Block by Modscan , you should reduce One address from
Block start Address in Modscan and set in pbsSoftLogic Modbus Block Definition .

Suppose in Modscan you read an Input Register Block from Address 101 and read 32 register.

In pbsSoftLogic you should set Block Start Address to 100 and Count to 32.

 w w w . p b s c o n t r o l . c o m

Page 83

https://www.win-tech.com/html/modbus1.htm
https://www.win-tech.com/html/modbus1.htm

 pbsSoftLogic User’s Manual 2019

In following figure you can see Modbus Master Driver and its relation with pbsSLKLX kernel.

Modbus Master Driver Loading Steps :

- pbsSLKLX is reading logic.cfg file and find there is Modbus Master Driver in Configuration
- pbsSLKLX Load Modbus Master Driver from /home/pbsLX/drvlib/mmix/libpbsModbusMLx.so
- pbsSLKLX will pass Driver Parameters and Tags based on logic.cfg file and Initialize driver
- modbus Master Driver (libpbsModbusMLx.so) will make new CPU thread and start to read write

Modbus Blocks from Modbus Slaves and update in ternal Driver Tags .
- pbsSLKLX has access to Modbus Driver Internal Tags by unified API Interface

 w w w . p b s c o n t r o l . c o m

Page 84

 pbsSoftLogic User’s Manual 2019

10 – Modbus Slave Configuration
pbssoftLogic supports Modbus slave Driver for communication with HMI Devices or any other Modbus
Master systems .

You can run Modbus master and salve on the same Controller in the same time but they should have
separate resource. For example COM Port 1 can be Modbus Master and COM Port 2 Modbus Slave.

There is Software limitation for number of Instances for any protocol in pbsSoftLogic (maximum 8) . You
can run 8 instances of Modbus Slave on the same Controller and connect to different modbus master in
the same time.

Totally you can define 1024 Tags for each Modbus Slave Instances.

For Adding Modbus Slave Driver to an Application, open Project settings and right click on Driver list.

Select ModbusSlave Driver and fill other fields.

Click on make Driver Button. pbsSoftlogic will make basic files for Modbus Slave Communication .

Close this page, Modbus Slave Driver is added to Driver list.

Right click on Modbus Slave Driver and select explorer. You can see two files in HMI_Drv directory.

 w w w . p b s c o n t r o l . c o m

Page 85

 pbsSoftLogic User’s Manual 2019

Options.xml : communication basic parameter

ModbusTags.xml : Modbus Slave Tags

 <Node>

 <Name>PhysicalLayer</Name>

 <Desc>RS232 , RS485 , RS422 ,TCP</Desc>

 <Value>RS232</Value>

 </Node>

PhysicalLayer : Physical layer . for Modbus RTU select one of RS232, RS485 or RS422 for ModbusTCP Select TCP

 <Node>

 <Name>Protocol</Name>

 <Desc>RTU,ASCII</Desc>

 <Value>RTU</Value>

 </Node>

Protocol : Modbus RTU or ASCII . This version supports RTU Only.

 <Node>

 <Name>COMPort</Name>

 <Desc>Serial Port for Communication 1,2,3,4,5,...</Desc>

 <Value>1</Value>

 </Node>

COMPort : Serial Com Port for ModbsuRTU

 w w w . p b s c o n t r o l . c o m

Page 86

 pbsSoftLogic User’s Manual 2019

 <Node>

 <Name>BaudRate</Name>

 <Desc>9600,19200,36400,52700,115200</Desc>

 <Value>9600</Value>

 </Node>

BaudRate : Modbus RTU Baudate for communication .

 <Node>

 <Name>DataBit</Name>

 <Desc>7,8</Desc>

 <Value>8</Value>

 </Node>

DataBit : ModbusRTU Data Bits . 7 or 8

 <Node>

 <Name>StopBit</Name>

 <Desc>1,2</Desc>

 <Value>1</Value>

 </Node>

StopBit : ModbusRTU Stop Bit .

 <Node>

 <Name>Parity</Name>

 <Desc>None,Even,Odd</Desc>

 <Value>None</Value>

 </Node>

Parity : Modbus RTU Parity Communication

 <Node>

 <Name>SlaveAddress</Name>

 <Desc>SlaveAddress</Desc>

 <Value>3</Value>

 </Node>

SlaveAddress: Modbus RTU/TCP slave ID

 w w w . p b s c o n t r o l . c o m

Page 87

 pbsSoftLogic User’s Manual 2019

 <Node>

 <Name>FlowControl</Name>

 <Desc>NO_FLOW_CONTROL,HW_FLOW_CONTROL,SW_FLOW_CONTROL</Desc>

 <Value>NO_FLOW_CONTROL</Value>

 </Node>

FlowControl: Flow Control for ModbusRTU

 <Node>

 <Name>PhysicalLayerScanTime</Name>

 <Desc>PhysicalLayerScanTime</Desc>

 <Value>100</Value>

 </Node>

PhysicalLayerScanTime : Modbus Slave Driver will read Serial or TCP port every PhysicalLayerScanTime msec . if master request is large (
like Writing many Modbus Signals , it is better to increase this value . 100 msec is optimized for may applications .

 <Node>

 <Name>Instance</Name>

 <Desc>Instance</Desc>

 <Value>1</Value>

 </Node>

Instance : If you have many ModbusSlave Driver on a controller , each one must has unique Instance number .(maximum 8)

 <Node>

 <Name>TCPPort</Name>

 <Desc>TCPPort</Desc>

 <Value>502</Value>

 </Node>

TCPPort : ModbusTCP Communication port . Default value is 502

 <Node>

 <Name>ShiftAddress</Name>

 <Desc>ShiftAddress</Desc>

 <Value>0</Value>

 </Node>

Shift Address : this value with add to all Modbus Slave Address that is request from master .

 w w w . p b s c o n t r o l . c o m

Page 88

 pbsSoftLogic User’s Manual 2019

Modbustags.xml file: in following figure you can see typical Modbus Slave Tags that is generate by
pbsSoftLogic when you make a new Modbus Slave Driver.

Each Modbus Tag has following properties:

Name: Unique Modbus Tag Name. pbsSoftLogic will read this names and you can use Tags name in your
logic .

Type: Tag Type (all Input Types must be writing in logic and all Output types must read in logic)

Input Types :

DI: Digital input.

AI : Analog input

FI : Floating point Input . In AI Space , will take 2 Address (Register)

INTI : Long input . In AI Space , will take 2 Address (Register)

INTUI : unsigned long . In AI Space , will take 2 Address (Register)

SFI : Swap Floating point Input . In AI Space , will take 2 Address (Register)

SINTI : Swap Long input . In AI Space , will take 2 Address (Register)

 w w w . p b s c o n t r o l . c o m

Page 89

 pbsSoftLogic User’s Manual 2019

SINTUI : Swap unsigned long . In AI Space , will take 2 Address (Register)

Output Types :

DO: Digital Output.

AO : Analog Output

FO : Floating point Output. In AO Space , will take 2 Address (Register)

INTO : Long Output. In AO Space , will take 2 Address (Register)

INTUO : unsigned long . In AO Space , will take 2 Address (Register)

SFO : Swap Floating point Output. In AO Space , will take 2 Address (Register)

SINTO : Swap Long Output. In AO Space , will take 2 Address (Register)

SINTUO : Swap unsigned long . In AO Space , will take 2 Address (Register)

Init: init value of Modbus Slave Tag

Address: Modbus Slave Tag Address.

Log : If Log value is 1 , Driver will always used latest value of Modbus tag not Init Value . Suppose you
define a set point with init value of 10 . If Modbus Master change this value to 12.0 and you restart
controller, Modbus Slave Driver will use 12 as init value of Tag .

Note 1 :This facility is just works for AO , DO and FO Tags . (Modbus Slave Output tgs)

Note 2 : Runtime kernel in Controller will check every min for Modbus Slave changes and will copy
changes to internal flash memory . so if you change set points by Modbus master and restart controller
before one min pass , then controller is not keeping last value of set points .

Modbus Slave Driver operation:

1-Modbus master is reading all Input Tags (DI, AI, FI,…) by polling.

You should write on all Modbus Slave Input Signal on your logic . (Connect to FB output ports)

2 - Modbus master is writing all output signals (DO, AO, FO, ..) .

You should read output tags in your logic. (Connect to FB input ports)

w w w . p b s c o n t r o l . c o m

Page 90

 pbsSoftLogic User’s Manual 2019

In above sample logic mslave:DOTag1 is an output signal from Modbus master (Linked to FB input port)
and mslave:AiTag1 is an input signal to modbus master (Linked to FB output ports)

There is a new SYS type signal in Modbus Slave Tags which is automatically define by pbsSoftLogic .

MasterOnLine Signal Shows Master is connected to Slave Driver or not. If Master is sending proper
Message to Slave Driver and getting Answer from Driver , MasterOnLine Will set to 1 , otherwise it will
set to 0 .

Important Point about PhysicalLayerScanTime

In Some projects that DCS is operating as Modbus Master and pbsSoftLogic is working as Modbus Slave ,
Because DCS is writing all signals mostly as Holding Register into Slave , Modbus Frame length from DCS
side is not small so you need to increase PhysicalLayerScanTime to accept DCS Modbus Frame .
Otherwise RTU is not communication with DCS .

 w w w . p b s c o n t r o l . c o m

Page 91

 pbsSoftLogic User’s Manual 2019

11 – DNP3 Slave Configuration
pbsSoftlogic supports DNP3 slave driver. Please refer to www.dnp.org web site for detail information
about DNP3 protocol.

You can define up to 4 dnp3 slave instances for a controller. Each DNP3 slave instance can be connected
to separate DNP3 master SCADA.

At each instance you can define 1024 DNP tags .

As physical layer you can select RS232 and TCP/IP.

Defining new DNP3 slave driver:

- Open project setting
- Right click on driver list
- Select New Driver
- Select DNP3Slave as Driver type
- Type a unique name for Driver name
- Select unique Instance for driver

- Click on make driver button .

pbsSoftLogic will make option file and DNP3 Slave tags files and will make a new directory with the
same name of Driver name in logic path .

- Options.xml define communication parameters
- DNP3Tags.xml define dnp3 tags

 w w w . p b s c o n t r o l . c o m

Page 92

http://www.dnp.org/

 pbsSoftLogic User’s Manual 2019

Options.xml parameters:

 <Node>

 <Name>PhysicalLayer</Name>

 <Desc>RS232 , TCP</Desc>

 <Value>TCP</Value>

 </Node>

 You can select physical layer between RS232 and TCP.

 <Node>

 <Name>COMPort</Name>

 <Desc>Serial Port for Communication 1,2,3,4,5,...</Desc>

 <Value>2</Value>

 </Node>

Controller Serial port for RS232 Communication.

 <Node>

 <Name>BaudRate</Name>

 <Desc>9600,19200,36400,52700,115200</Desc>

 <Value>19200</Value>

 </Node>

Communication baud rate

 <Node>

 <Name>SlaveAddress</Name>

 <Desc>SlaveAddress</Desc>

 <Value>3</Value>

 </Node>

RTU DNP3 Address

w w w . p b s c o n t r o l . c o m

Page 93

 pbsSoftLogic User’s Manual 2019

 <Node>

 <Name>MasterIPAddress</Name>

 <Desc>MasterIPAddress</Desc>

 <Value>10.0.0.11</Value>

 </Node>

DNP3 master SCADA IP address

 <Node>

 <Name>TCPIPPort</Name>

 <Desc>TCPIPPort</Desc>

 <Value>20000</Value>

 </Node>

TCP Port for using in TCP Connection , by default it is 20000

 <Node>

 <Name>MasterAddress</Name>

 <Desc>MasterAddress</Desc>

 <Value>1</Value>

 </Node>

DNP3 Master SCADA Address

 <Node>

 <Name>LocalIPAddress</Name>

 <Desc>LocalIPAddress</Desc>

 <Value>10.0.0.10</Value>

 </Node>

Controller LAN Port for communication with master SCADA

w w w . p b s c o n t r o l . c o m

Page 94

 pbsSoftLogic User’s Manual 2019

<Node>

 <Name>PhysicalLayerScanTime</Name>

 <Desc>PhysicalLayerScanTime</Desc>

 <Value>100</Value>

 </Node>

 <Node>

 <Name>Instance</Name>

 <Desc>Instance</Desc>

 <Value>1</Value>

 </Node>

Driver instance number 1 ,2,3,4

 <Node>

 <Name>TCPIPMode</Name>

 <Desc>0 = TCP Listening End Point , 1= UDP endpoint , 2 = TCP Dual End Point</Desc>

 <Value>0</Value>

 </Node>

 <Node>

 <Name>AppFrameSize</Name>

 <Desc>AppFrameSize</Desc>

 <Value>2000</Value>

 </Node>

w w w . p b s c o n t r o l . c o m

Page 95

 pbsSoftLogic User’s Manual 2019

 <Node>

 <Name>SBOTimeOut</Name>

 <Desc>SBOTimeOut(Sec)</Desc>

 <Value>10</Value>

 </Node>

Select before Operate delay

 <Node>

 <Name>NoCommTimeout</Name>

 <Desc>NoCommTimeout(Sec)</Desc>

 <Value>0</Value>

 </Node>

Time that RTU is checking communication, if there is no any communication in this period, RTU will close
connection in TCP Mode. 0 means communication checking is disabling. Unit is in second.

w w w . p b s c o n t r o l . c o m

Page 96

 pbsSoftLogic User’s Manual 2019

DNP3Tags.xml

When you make a new driver, pbsSoftLogic will make a default DNP3 Tags file. You can edit this file and
add or remove tags.

Name: Tag Name. It should be unique in your Logic.

Type: DNP3 Tag Type. We support following types:

- DI : Digital input Read By Master with different variations , DNP Group1 , 2
- AI : Analog input Read By Master with different variations , DNP Group 30,31,32,33
- CNT : Counter Read By Master with different variations DNP Group 20,21,22,23
- FI : Float Input : DNP Group 100
- DOB : Digital Output Block Write by master with different mode DNP Group 12 ,13
- AOB : Analog Output Block Write by master with different mode , DNP Group 41
- DO : DO Status Read By Master with different variations , DNP Group 10,11
- AO : AO Status Read By Master with different variations , DNP Group 40
- DPI : Double Bit Binary Read By Master with different variations , DNP Group 3,4

Class : Based on DNP3 Standard we have class 0 ,1,2,3,4

Class 0 means current value of tags without event buffering . So if you put class 0 for a tag, RTU is not
buffering tag changes and every time master read tag , RTU will send current value .

Class 1,2,3,4 there is no different or priority between different classes. So if you put class 1,2,3 or 4 for a
tag RTU will buffer all tag changes with time and will report to Master SCADA .

There is a cyclic buffer with 10,000 events for each DNP Type in RTU.

Address: DNP3 tag address. AI and FI are using same address range.

Log : When set to 1 for DOB and AOB Tags , RTU will keep last value of Set Point in internal memory flash
and if you restart RTU , it will use latest set points from Master SCADA . RTU will check AOB and DOB
changes every min and if it detect changes, it will save them on internal flash memory.

Init : Init Value of a tag .

 w w w . p b s c o n t r o l . c o m

Page 97

 pbsSoftLogic User’s Manual 2019

Tag Flag: Based on DNP3 Standard, DNP3 Data Types has Flag Status with following definition.

 w w w . p b s c o n t r o l . c o m

Page 98

 pbsSoftLogic User’s Manual 2019

 w w w . p b s c o n t r o l . c o m

Page 99

 pbsSoftLogic User’s Manual 2019

State Flag for Digital signals:

 w w w . p b s c o n t r o l . c o m

Page 100

 pbsSoftLogic User’s Manual 2019

State Tag for Double Bit signals :

State Flag for DO Signals :

State Flag for Counters :

 w w w . p b s c o n t r o l . c o m

Page 101

 pbsSoftLogic User’s Manual 2019

State Flag for AI :

 w w w . p b s c o n t r o l . c o m

Page 102

 pbsSoftLogic User’s Manual 2019

State Flag for AO :

You can set DNP3 Flags to DNP3 Driver by defining Status Tags.

DIS, AIS, FIA, DPIS, CNTS, DOS, AOS are data types for Status flag.

For Tags that you want to define Status Tag, you need to define a new tag with Data type changed to
Status Type and with new Name. Other Parameters are no changed. It should define exactly after Main
Tag. Look at following examples:

 <Tag Name="DITag1" Type="DI" Class="1" Init="0" Address="1" Log="0" />

 <Tag Name="DITag1.s" Type="DIs" Class="1" Init="0" Address="1" Log="0" />

 <Tag Name="AITag1" Type="AI" Class="1" Init="0" Address="1" Log="0" />

 <Tag Name="AITag1.s" Type="AIS" Class="1" Init="0" Address="1" Log="0" />

 <Tag Name="FITag1" Type="FI" Class="1" Init="0" Address="1" Log="0" />

 <Tag Name="FITag1.s" Type="FIS" Class="1" Init="0" Address="1" Log="0" />

 w w w . p b s c o n t r o l . c o m

Page 103

 pbsSoftLogic User’s Manual 2019

 <Tag Name="CNTTag1" Type="CNT" Class="1" Init="0" Address="1" Log="0" />

 <Tag Name="CNTTag1.s" Type="CNTS" Class="1" Init="0" Address="1" Log="0" />

 <Tag Name="DOTag1" Type="DO" Class="1" Init="0" Address="1" Log="0" />

 <Tag Name="DOTag1.s" Type="DOS" Class="1" Init="0" Address="1" Log="0" />

 <Tag Name="AOTag1" Type="AO" Class="1" Init="0" Address="1" Log="0" />

 <Tag Name="AOTag1.s" Type="AOs" Class="1" Init="0" Address="1" Log="0" />

For Tags without Status Tag , psle consider Tag always Online .

For Tags with Status Tag defined, you need to pass 1 for online and 0 for Offline Status of Tag in your
logic.

Look at following sample: When Temperature is more than 20 deg, then FITag1 Status is Online and
valid. Otherwise it is Offline.

Example 2: suppose you connect COM3 of AMS-R3010 RTU to Power meter by Modbus Master. Then
you can link online status of DNP3 Tags for power meter to Modbus SYS.Online Tag.

So in Master SCADA when there is no communication between RTU and Power meter, it will show Tag
Offline.

 w w w . p b s c o n t r o l . c o m

Page 104

 pbsSoftLogic User’s Manual 2019

DNP3 Slave driver Operation:

1 - Master SCADA will read all Input Signals (DI , AI , FI , DO , AO , DPI)

- You need to write all Input Signals in your logic.(Link to FB right ports)

2 – Master SCADA will write Output Signals (DOB , AOB)

- You need to read all Output Tags in your logic (Link to FB left Ports)

In above logic we have following DNPs signals:

- Dnps: DOBTag1 is a DOB signal which is written by DNP Master.
- dnps:DITag1 is a Di signal which is read by DNP Master
- dnps:AOBTag1 : AOB signal (Analog Output) which is written by DNP Master
- dnps:AITag1 : AI (Analog input) Signal which is read by DNP Master

DNP3 function codes which are implemented:

- Read class 0,1,2,3,4
- Integrity command
- Read Event by exception (RBE)
- Time synchronization
- Enable /Disable unsolicited communications (Transfer data from RTU to Master SCADA)
- Dynamic Class assign
- Freezing counters
- Write

 w w w . p b s c o n t r o l . c o m

Page 105

 pbsSoftLogic User’s Manual 2019

Sample Logic for handling State Flag for Digital and Analog Signals:

 w w w . p b s c o n t r o l . c o m

Page 106

 pbsSoftLogic User’s Manual 2019

Test DNP3 driver with Kepware OPC Server

For testing DNP3 Driver you can use KepWare OPC Server. Please download KepWare OPC suite from
www.kepware.com

Our sample configuration is as following. You can download it from
www.pbscontrol.com/psleSample/dnp_Kepware.zip

DNP Type: TCP communication with port Number 20,000

Unsolicited communication: Automatic and Master is reading class1 events every 5 Sec

RTU Type: AMS-R3010 RTU

RTU IP: 192.168.1.137

RTU DNP3 ID = 3

Master ID = 1

Master IP Address: 192.168.1.152

Keep Alive Timer in RTU (NoCommTimeout): 60 Sec , we will set Keep Alive time to 20 sec in master .

RTU DNP3 Tags as Following :

 <Tag Name="MasterOnline" Type="SYS" Class="0" Init="0" Address="0" Log="0" />

 <Tag Name="DITag1" Type="DI" Class="1" Init="0" Address="1" Log="0" />

 <Tag Name="DITag2" Type="DI" Class="1" Init="0" Address="2" Log="0" />

 <Tag Name="DITag3" Type="DI" Class="1" Init="0" Address="3" Log="0" />

 <Tag Name="DITag4" Type="DI" Class="1" Init="0" Address="4" Log="0" />

 <Tag Name="DITag5" Type="DI" Class="1" Init="0" Address="5" Log="0" />

 <Tag Name="DITag6" Type="DI" Class="1" Init="0" Address="6" Log="0" />

 <Tag Name="DITag7" Type="DI" Class="1" Init="0" Address="7" Log="0" />

 <Tag Name="DITag8" Type="DI" Class="1" Init="0" Address="8" Log="0" />

 <Tag Name="DITag9" Type="DI" Class="1" Init="0" Address="9" Log="0" />

 <Tag Name="DITag10" Type="DI" Class="1" Init="0" Address="10" Log="0" />

 <Tag Name="AITag1" Type="AI" Class="1" Init="0" Address="1" Log="0" />

w w w . p b s c o n t r o l . c o m

Page 107

http://www.kepware.com/
http://www.pbscontrol.com/psleSample/dnp_Kepware.zip

 pbsSoftLogic User’s Manual 2019

 <Tag Name="AITag2" Type="AI" Class="1" Init="0" Address="2" Log="0" />

 <Tag Name="AITag3" Type="AI" Class="1" Init="0" Address="3" Log="0" />

 <Tag Name="AITag4" Type="AI" Class="1" Init="0" Address="4" Log="0" />

 <Tag Name="AITag5" Type="AI" Class="1" Init="0" Address="5" Log="0" />

 <Tag Name="AITag6" Type="AI" Class="1" Init="0" Address="6" Log="0" />

 <Tag Name="AITag7" Type="AI" Class="1" Init="0" Address="7" Log="0" />

 <Tag Name="AITag8" Type="AI" Class="1" Init="0" Address="8" Log="0" />

 <Tag Name="AITag9" Type="AI" Class="1" Init="0" Address="9" Log="0" />

 <Tag Name="AITag10" Type="AI" Class="1" Init="0" Address="10" Log="0" />

 <Tag Name="FITag1" Type="FI" Class="1" Init="0" Address="11" Log="0" />

 <Tag Name="FITag2" Type="FI" Class="1" Init="0" Address="12" Log="0" />

 <Tag Name="FITag3" Type="FI" Class="1" Init="0" Address="13" Log="0" />

 <Tag Name="FITag4" Type="FI" Class="1" Init="0" Address="14" Log="0" />

 <Tag Name="FITag5" Type="FI" Class="1" Init="0" Address="15" Log="0" />

 <Tag Name="FITag6" Type="FI" Class="1" Init="0" Address="16" Log="0" />

 <Tag Name="FITag7" Type="FI" Class="1" Init="0" Address="17" Log="0" />

 <Tag Name="FITag8" Type="FI" Class="1" Init="0" Address="18" Log="0" />

 <Tag Name="FITag9" Type="FI" Class="1" Init="0" Address="19" Log="0" />

 <Tag Name="FITag10" Type="FI" Class="1" Init="0" Address="20" Log="0" />

 <Tag Name="CNTTag1" Type="CNT" Class="1" Init="0" Address="1" Log="0" />

 <Tag Name="CNTTag2" Type="CNT" Class="1" Init="0" Address="2" Log="0" />

 <Tag Name="CNTTag3" Type="CNT" Class="1" Init="0" Address="3" Log="0" />

 <Tag Name="CNTTag4" Type="CNT" Class="1" Init="0" Address="4" Log="0" />

 <Tag Name="CNTTag5" Type="CNT" Class="1" Init="0" Address="5" Log="0" />

 <Tag Name="CNTTag6" Type="CNT" Class="1" Init="0" Address="6" Log="0" />

w w w . p b s c o n t r o l . c o m

Page 108

 pbsSoftLogic User’s Manual 2019

 <Tag Name="CNTTag7" Type="CNT" Class="1" Init="0" Address="7" Log="0" />

 <Tag Name="CNTTag8" Type="CNT" Class="1" Init="0" Address="8" Log="0" />

 <Tag Name="CNTTag9" Type="CNT" Class="1" Init="0" Address="9" Log="0" />

 <Tag Name="CNTTag10" Type="CNT" Class="1" Init="0" Address="10" Log="0" />

 <Tag Name="DOBTag1" Type="DOB" Class="1" Init="0" Address="1" Log="0" />

 <Tag Name="DOBTag2" Type="DOB" Class="1" Init="0" Address="2" Log="0" />

 <Tag Name="DOBTag3" Type="DOB" Class="1" Init="0" Address="3" Log="0" />

 <Tag Name="DOBTag4" Type="DOB" Class="1" Init="0" Address="4" Log="0" />

 <Tag Name="DOBTag5" Type="DOB" Class="1" Init="0" Address="5" Log="0" />

 <Tag Name="AOBTag1" Type="AOB" Class="1" Init="0" Address="1" Log="0" />

 <Tag Name="AOBTag2" Type="AOB" Class="1" Init="0" Address="2" Log="0" />

 <Tag Name="AOBTag3" Type="AOB" Class="1" Init="0" Address="3" Log="0" />

 <Tag Name="AOBTag4" Type="AOB" Class="1" Init="0" Address="4" Log="0" />

 <Tag Name="AOBTag5" Type="AOB" Class="1" Init="0" Address="5" Log="0" />

 <Tag Name="DOTag1" Type="DO" Class="1" Init="0" Address="1" Log="0" />

 <Tag Name="DOTag2" Type="DO" Class="1" Init="0" Address="2" Log="0" />

 <Tag Name="DOTag3" Type="DO" Class="1" Init="0" Address="3" Log="0" />

 <Tag Name="DOTag4" Type="DO" Class="1" Init="0" Address="4" Log="0" />

 <Tag Name="DOTag5" Type="DO" Class="1" Init="0" Address="5" Log="0" />

 <Tag Name="AOTag1" Type="AO" Class="1" Init="0" Address="1" Log="0" />

 <Tag Name="AOTag2" Type="AO" Class="1" Init="0" Address="2" Log="0" />

 <Tag Name="AOTag3" Type="AO" Class="1" Init="0" Address="3" Log="0" />

 <Tag Name="AOTag4" Type="AO" Class="1" Init="0" Address="4" Log="0" />

 <Tag Name="AOTag5" Type="AO" Class="1" Init="0" Address="5" Log="0" />

w w w . p b s c o n t r o l . c o m

Page 109

 pbsSoftLogic User’s Manual 2019

Develop RTU logic as following:

 w w w . p b s c o n t r o l . c o m

Page 110

 pbsSoftLogic User’s Manual 2019

RTU Driver Configuration: Define one Local IO and one DNP3 Slave Driver.

 w w w . p b s c o n t r o l . c o m

Page 111

 pbsSoftLogic User’s Manual 2019

Step 1 : run Kepware Configurator Software

Step 2 : Add new communication channel to configuration

Step 3 – Select “DNP Master Ethernet” to communicate with RTU with DNP3 over TCP connection.

 w w w . p b s c o n t r o l . c o m

Page 112

 pbsSoftLogic User’s Manual 2019

Step 4 : Select your PC Ethernet card

Step 5 : Select default options in Write Optimization parameters

Step 6 : No Need to select VPN in this step .

 w w w . p b s c o n t r o l . c o m

Page 113

 pbsSoftLogic User’s Manual 2019

Step 7 : select TCP protocol , Write IP address of RTU and communication port (20,000 as default) in this
stage .

Step 8 : Keep timeout times as default .

Step 9 : Communication channel configuration is done on this stage . Click on Finish button .

 w w w . p b s c o n t r o l . c o m

Page 114

 pbsSoftLogic User’s Manual 2019

Step 10 : click on Add device item .

Step 11 : Keep Scan mode as default .

Step 12 : Keep Auto Demotion as default .

 w w w . p b s c o n t r o l . c o m

Page 115

 pbsSoftLogic User’s Manual 2019

Step 13 : Write DNP3 Slave and Master Address and Keep-Alive Timer to 20 sec .

Step 14 : Keep Time synchronization as LAN .

Step 15 : Set read class poll to 5 sec for reading changes from RTU every 5 Sec.

 w w w . p b s c o n t r o l . c o m

Page 116

 pbsSoftLogic User’s Manual 2019

Step 16 : Set Send Integrity poll Parameter as following :

Step 17 : set Unsolicited communication to automatic as following :

Step 18 : Keep Play Back Event to disable as default .

 w w w . p b s c o n t r o l . c o m

Page 117

 pbsSoftLogic User’s Manual 2019

Step 19 : No need to import tags we will define tags manually.

Step 20 : No Need to define Authentication .pbsSoftLogic DNP3 driver still not supports DNP3
Authentication .

Step 21 : Pass File control page . pbsSoftLogic DNP3 driver still not supports File Transfer functionality .

 w w w . p b s c o n t r o l . c o m

Page 118

 pbsSoftLogic User’s Manual 2019

Step 22:Set Advanced parameters as following :

Step 23 : you finished Device configuration in this stage .Click on Finish Button .

 w w w . p b s c o n t r o l . c o m

Page 119

 pbsSoftLogic User’s Manual 2019

Step 24 : In this stage you should define DNP3 Tags for OPC Server.

Reading Float Signal value from RTU by OPC Server define one float tag as following:

Tag address in OPC : DNPGroupNumber.DNPVariation.DNPTagAddress.Value

 w w w . p b s c o n t r o l . c o m

Page 120

 pbsSoftLogic User’s Manual 2019

Reading DNP3 Digital Input Tag from RTU by OPC Server: Define an OPC tag as following:

 w w w . p b s c o n t r o l . c o m

Page 121

 pbsSoftLogic User’s Manual 2019

When Value of Signal is 129 in OPC Server , it means that :

Bit 0 is Online

Bit 7 is 1 (Signal Value is 1)

When Value of signal is 1 It means Bit 0 is online and Bit 7 (Signal Value) is 0

Reading Analog Input 16 Bit with Flag :

 w w w . p b s c o n t r o l . c o m

Page 122

 pbsSoftLogic User’s Manual 2019

For reading Analog Input tags from RTU you need to define OPC Tag with Group 30 .

For Reading as 16 Bit Value, use Variation 2.

 w w w . p b s c o n t r o l . c o m

Page 123

 pbsSoftLogic User’s Manual 2019

Important Points for AOB and DOB Tag Writing by kepware DNP3 OPC Server to RTU:

- Always for any AOB or DOB Tags you MUST define AO and DO Tags with same addressing.
Otherwise Kepware AOB or DOB tags will not get online status.

- In Device Advanced Properties , remove check mark for” Enable Feed Back Poll after Write”

 w w w . p b s c o n t r o l . c o m

Page 124

 pbsSoftLogic User’s Manual 2019

-

DNP3 Driver is only supported Short and Long Write for AOB Tags.

So you should define AOB or DOB tags as following:

40 : AO Tag Write

1: Long Write

2:Short Write

 w w w . p b s c o n t r o l . c o m

Page 125

 pbsSoftLogic User’s Manual 2019

12 – IEC870-5 Slave (101-104) Configuration
pbsSoftLogic supports IEC870-5-101/104 protocols for communication with master SCADA .

You can setup maximum four IEC slave instance for each RTU. It means you can connect to 4 Separate
SCADA master in the same time.

IEC870-5-101 is communicating over RS232 and IEC870-5-104 is communicating over TCP.

For each IEC Driver instance you can define 1024 IEC Tags.

Defining new IEC Driver:

Open project setting and right click on driver list. Select new driver and then select IEC8705Slave .

Type Deriver name and select instance as following figure.

pbsSoftlogic will make a default configuration and IEC tags in a directory located at logic path . Directory
name is name of driver.

IEC870-5 driver files:

- Options.xml define communication parameters
- IECSTags.xml define IEC slave tags

 w w w . p b s c o n t r o l . c o m

Page 126

 pbsSoftLogic User’s Manual 2019

 Communication parameters : optione.xml file content :

 <Node>

 <Name>PhysicalLayer</Name>

 <Desc>RS232 , TCP</Desc>

 <Value>RS232</Value>

 </Node>

 <Node>

 <Name>COMPort</Name>

 <Desc>Serial Port for Communication 1,2,3,4,5,...</Desc>

 <Value>1</Value>

 </Node>

 <Node>

 <Name>BaudRate</Name>

 <Desc>9600,19200,36400,52700,115200</Desc>

 <Value>19200</Value>

 </Node>

 <Node>

 <Name>SlaveAddress</Name>

 <Desc>SlaveAddress</Desc>

 <Value>3</Value>

 </Node>

w w w . p b s c o n t r o l . c o m

Page 127

 pbsSoftLogic User’s Manual 2019

 <Node>

 <Name>MasterIPAddress</Name>

 <Desc>MasterIPAddress</Desc>

 <Value>127.0.0.1</Value>

 </Node>

 <Node>

 <Name>TCPIPPort</Name>

 <Desc>TCPIPPort</Desc>

 <Value>2404</Value>

 </Node>

 <Node>

 <Name>MasterAddress</Name>

 <Desc>MasterAddress</Desc>

 <Value>1</Value>

 </Node>

 <Node>

 <Name>LocalIPAddress</Name>

 <Desc>LocalIPAddress</Desc>

 <Value>127.0.0.1</Value>

 </Node>

 <Node>

 <Name>PhysicalLayerScanTime</Name>

 <Desc>PhysicalLayerScanTime</Desc>

 <Value>100</Value>

 </Node>

w w w . p b s c o n t r o l . c o m

Page 128

 pbsSoftLogic User’s Manual 2019

 <Node>

 <Name>Instance</Name>

 <Desc>Instance</Desc>

 <Value>1</Value>

 </Node>

 <Node>

 <Name>COTZ</Name>

 <Desc>Cause of Transmition Size 1,2 </Desc>

 <Value>1</Value>

 </Node>

 <Node>

 <Name>CAOAZ</Name>

 <Desc>Common Address of ASDU Size 1,2 </Desc>

 <Value>1</Value>

 </Node>

 <Node>

 <Name>IOZ</Name>

 <Desc>Information Object Size Size 1,2,3</Desc>

 <Value>1</Value>

 </Node>

 <Node>

 <Name>MODE</Name>

 <Desc>Communication Mode Balance(B) , Unbalan(U) </Desc>

 <Value>B</Value>

 </Node>

w w w . p b s c o n t r o l . c o m

Page 129

 pbsSoftLogic User’s Manual 2019

 <Node>

 <Name>KParam</Name>

 <Desc>KParameter 1~ 32767 max difference recive sequence number to send state
variable</Desc>

 <Value>12</Value>

 </Node>

 <Node>

 <Name>WParam</Name>

 <Desc>WParameter 1~ 32767 Latest ACK after reciving W I-format APDUs</Desc>

 <Value>8</Value>

 </Node>

 <Node>

 <Name>T0Param</Name>

 <Desc>T0Parameter Timeout of Connection establishment(sec)</Desc>

 <Value>30</Value>

 </Node>

 <Node>

 <Name>T1Param</Name>

 <Desc>T1Parameter Timeout of Send test APDU(sec)</Desc>

 <Value>15</Value>

 </Node>

 <Node>

 <Name>T2Param</Name>

 <Desc>T2Parameter Timeout for ACK in case of no data message (sec)</Desc>

 <Value>10</Value>

 </Node>

w w w . p b s c o n t r o l . c o m

Page 130

 pbsSoftLogic User’s Manual 2019

 <Node>

 <Name>T3Param</Name>

 <Desc>T3Parameter Timeout for sending test frames in case of a long idle state (sec)</Desc>

 <Value>20</Value>

 </Node>

IEC Slave Tag file: IECSTags.xml

Name: Tag Name. Should be unique in your logic

Type: IEC Tags type. Following type is supported:

- DI (Digital input) IEC Tag Type 1 ,30, M_SP_NA_1
- AI (Analog Input) IEC Tag Type 9,34,M_ME_NA_1 ,M_ME_TD_1
- FI(Float Input) IEC Tag Type 13 ,36 M_ME_NC_1 ,M_ME_TF_1
- CNT (Counter) IEC Tag Type 15 , 37 M_IT_NA_1,M_IT_TB_1
- DPI (Double Point Information) IEC Tag Type 3,4 ,M_DP_NA_1,M_DP_TA_1
- DO (Digital Output) IEC Tag Type 45 , C_SC_NA_1
- AO (Analog Output) IEC Tag Type 48 , C_SE_NA_1
- FO (Float Output) IEC Tag Type 50 ,C_SE_NC_1
- DPO(Double command) IEC Tag Type 46 , C_DC_NA_1

- Process information in monitor direction
- <1> := Single-point information (M_SP_NA_1)
- <3> := double-point information (M_DP_NA_1)
- <4> := double-point information with time tag (M_DP_TA_1)
- <9> := Measured value, normalized value (M_ME_NA_1)
- <13> := Measured value, short floating point value (M_ME_NC_1)
- <15> := Integrated totals (M_IT_NA_1)
- <21> := Measured value, normalized value without quality descriptor (M_ME_ND_1)
- <30> := Single-point information with time tag CP56Time2a (M_SP_TB_1)
- <34> := Measured value, normalized value with time tag CP56Time2a(M_ME_TD_1)
- <36> := Measured value, short floating point value with time tag CP56Time2a (M_ME_TF_1)
- <37> := Integrated totals with time tag CP56Time2a (M_IT_TB_1)

 w w w . p b s c o n t r o l . c o m

Page 131

 pbsSoftLogic User’s Manual 2019

Process information in control direction

<45> := Single command (C_SC_NA_1)

<46> := double command (C_DC_NA_1)

<48> := Set point command, normalized value (C_SE_NA_1)

<50> := Set point command, short floating point value (C_SE_NC_1)

System information in monitor direction

<70> := End of initialization (M_EI_NA_1)

System information in control direction

<100>:= Interrogation command (C_IC_NA_1)

<101>:= Counter interrogation command (C_CI_NA_1)

<103>:= Clock synchronization command (C_CS_NA_1)

 Basic application functions

Station initialization

Cyclic data transmission

Spontaneous transmission

Global Station interrogation

Clock synchronization

Command transmission

- Direct command transmission
- Direct set point command transmission
- Select and execute command
- Select and execute set point command
- Transmission of integrated totals
- Mode B: Local freeze with counter interrogation
- Counter read
- Counter freeze without reset
- Counter freeze with reset
- Counter reset
- General request counter

 w w w . p b s c o n t r o l . c o m

Page 132

 pbsSoftLogic User’s Manual 2019

Class : IEC Supported two classes , Class1 and Class2 .

From IEC870-5-101 standard:

The polling procedure is supported by the link layer which requests user data of classes 1
and 2. In general, ASDUs containing the causes of transmission periodic/cyclic are assigned to
be transmitted with the link layer data class 2 and all time tagged or spontaneously transmitted
ASDUs are assigned to be transmitted with the link layer data class 1. Other ASDUs with other
causes of transmission of low priority such as background scan may also be assigned to data
class 2 and must be listed in the interoperability document.
In this case, it has to be considered that the link request of class 1 occurs at a different point of
time (to or from) the link request of class 2, which may influence the correct sequence of the
ASDUs delivered to the application layer of the controlling station.
In response to a class 2 poll, a controlled station may respond with class 1 data when there is
no class 2 data available.

Init : IEC Tag Init Value

Address : IEC Tag Address

: Log : When set to 1 for DO , AO ,FO and DPO Tags , RTU will keep last value of Set Point in internal
memory flash and if you restart RTU , it will use latest set points from Master SCADA . RTU will check AO
, DO , FO and DPO changes every min and if it detect changes, it will save them on internal flash
memory.

 w w w . p b s c o n t r o l . c o m

Page 133

 pbsSoftLogic User’s Manual 2019

IEC101/104 State Tag:

Based on IEC101 /104 standards each Tag has a quality descriptor field.

Quality descriptor shows tag status.

 w w w . p b s c o n t r o l . c o m

Page 134

 pbsSoftLogic User’s Manual 2019

 w w w . p b s c o n t r o l . c o m

Page 135

 pbsSoftLogic User’s Manual 2019

 w w w . p b s c o n t r o l . c o m

Page 136

 pbsSoftLogic User’s Manual 2019

Defining Tag State

 You need to define a state tag exactly after IEC tag definition in IECSTags.xml file.

Note: State tag MUST be defined exactly after IEC Tag.

Look at Above example: DITag1 and DITag1.s Tag name MUST be different with IEC tag . You can add .s
or _s to IEC as an example.

There are following State tag types:

- DIS : State Tag type for DI
- AIS : State Tag type for AI
- FIS : State Tag Type for FI
- DPIS : State Tag Type for DPI
- CNTS : State Tag Type for CNT (Counters)

 w w w . p b s c o n t r o l . c o m

Page 137

 pbsSoftLogic User’s Manual 2019

You need to write State Tag in RTU Logic. You can use IEC1014Sts Function Block to make State Tag
Signal in your logic. IV, NT, SB and BL are defined in the IEC101/104 standard.

Note: IEC1014Sts is a Lua Function block and you must transfer it to controller for proper operation of
your logic. Please look at Lua User defined FB for detail information.

IEC1014Sts is used for DIS, DPIS, AIS and FIS State Tags.

For counters, you need to set only IV filed.

- IV = 0 Counter value is valid
- IV = 1 Counter value is not valid

So value of State tag for counter is only 0 or 1.

 w w w . p b s c o n t r o l . c o m

Page 138

 pbsSoftLogic User’s Manual 2019

IEC 870-5 Slave driver Operation:

1 - Master SCADA will read all Input Signals (DI , AI , FI , DPI ,CNT)

- You need to write all Input Signals in your logic.(Link to FB right ports)

2 – Master SCADA will write Output Signals (DO , AO,FO ,DPO)

- You need to read all Output Tags in your logic (Link to FB left Ports)

In above logic master will write to iec_drv:DOTag1 and will read iec_drv:DITag1

 w w w . p b s c o n t r o l . c o m

Page 139

 pbsSoftLogic User’s Manual 2019

13 – S7 Communication Driver Configuration

pbsSoftLogic supports Siemens S7-Communication protocol for Read/Write Tags from/To all S7 Series
PLCs .

pbssoftLogic supports Client side for S7-Communication protocol .

S7-communication works on TCP connection and your Siemens PLC should have IP address.

S7-Connect driver is not working with MAC ID of PLC.

Defining S7 Client in pbsSoftLogic :

- Define a new deriver and select S7ConnectClient

Select a unique name for driver and select Driver Instance.

 w w w . p b s c o n t r o l . c o m

Page 140

 pbsSoftLogic User’s Manual 2019

If you want to connect to more than one S7 PLC, define a new S7ConnectClient for each PLC.
Click on Make Driver, pbsSoftLogic will make a new directory (Driver name) and make default
configuration file there.
You need to enable S7communication protocol on your PLC. pbsSoftLogic S7 Driver can
read/write following type of information from S7 Series PLCs:

- Data Block
- Process Input / Output
- Memory

For defining a new S7 Driver for your project, in new Driver Page select s7ConnectClient Driver.

Select a unique name for driver and select Instance. When you have more than one PLC you
need to define one S7Connect Driver for each PLC with different instance number.
You can connect maximum 8 PLC to pbsSoftLogic based RTU.

When you make a new driver, pbsSoftlogic will make default configuration files in your project.

 w w w . p b s c o n t r o l . c o m

Page 141

 pbsSoftLogic User’s Manual 2019

Options.xml file:

PLCIP: IP address of S7 PLC
RACK, Slot: you need to find these numbers from your PLC Configuration application.

BlockScanTime: Scan time of reading/Writing to PLC In millisecond

 w w w . p b s c o n t r o l . c o m

Page 142

 pbsSoftLogic User’s Manual 2019

S7Tags.xml file:

You need to define S7 Tags in this file. pbsSoftlogic will define for you all different supported blocks as
sample for you when you define a new driver .

SYS block:

This block has 4 Tags: Online and ErrorNum is not used in driver.

ReadNum : Shows number of Read Operation from PLC (from 0 to 32000)

WriteNum: Shows number of Write Operation to PLC (from 0 to 32000)

You need to always check Read or Write Number In your logic. If for any reason RTU lost connection
with PLC these number will not changed. And if you detect for example for 5 Sec these numbers are not
changed, you will find that PLC connection is Offline and need to restart RTU.

S7Driver can only read/Write in byte format to S7 PLC.

You can define maximum 32 Blocks and in each block 64 Bytes can be read/Write. But total number of
tags should not be more than 1024.

DBR Block:

 w w w . p b s c o n t r o l . c o m

Page 143

 pbsSoftLogic User’s Manual 2019

DBR is using for reading S7 PLC Data Blocks.

DBNum = S7 Data Block Number

Start = Start Byte from Block

Channels: Number of Bytes to be read

In above sample RTU is reading 8 bytes from beginning of Block from DB Number 1.

DBW Block:

DBW Block is using for writing to S7 PLC Data blocks.

DBNum = S7 Data Block Number

Start = Start Byte from Block

Channels: Number of Bytes to be writes

In above sample RTU is Writing 8 bytes from beginning of Block from DB Number 2.

 w w w . p b s c o n t r o l . c o m

Page 144

 pbsSoftLogic User’s Manual 2019

PI Block: process input

PI Block will use for reading PLC Input Process Data. Suppose you map 32 digital Inputs and 4 Analog
input channels in PLC Process Input Area from Address 10 to 22. Then you can read these channels by
following PI block definition:

PI_0 , PI_1 , PI_2 and PI_3 has value of 32 digital input channel .

PI_4 /PI_5 = Analog input 1

PI_6 /PI_7 = Analog input 2

PI_8 /PI_9 = Analog input 3

PI_10 /PI_11 = Analog input 4

DBNum = Not used for PI Block.

 w w w . p b s c o n t r o l . c o m

Page 145

 pbsSoftLogic User’s Manual 2019

POR, POW: POR = Read Process Output Status, POW = Write process output

POR Block will use for reading PLC Output Process Data.

POW Block will use for Writing PLC Output Process Data.

DBNum = Not used for POR, POW Blocks.

Start = Start Address of Process output

Channels: Number of Bytes to Write/Read

In above example RTU is reading Output process area of PLC from address 0 for 8 bytes by Block4 and
will write on same area by Block5.

 w w w . p b s c o n t r o l . c o m

Page 146

 pbsSoftLogic User’s Manual 2019

MBR , MBW Blocks :MBR = Read memory Area , MBW = Write memory Area

MBR Block will use for reading PLC memory Area.

PBW Block will use for Writing PLC memory area.

DBNum = Not used for POR, POW Blocks.

Start = Start Address of Memory area

Channels: Number of Bytes to Write/Read

In above example RTU is reading Memory area of PLC from address 0 for 8 bytes by Block6 and will write
on same area by Block7.

pbsSoftLogic is used Snap7 project for communication with S7PLC . Please refer to
http://snap7.sourceforge.net/

 w w w . p b s c o n t r o l . c o m

Page 147

http://snap7.sourceforge.net/

 pbsSoftLogic User’s Manual 2019

In above example RTU is checking PLC Connection status by watching ReadNum parameter. WDT
function (in Process Group) it will watch S input, if S is changing in less than TO Sec, It will keep Q to 0 .
But if S is not changed in TO sec, Q will change to 1.

In About Example WDT.Q Output is connected to RTU Reset Signal. It means that if RTU couldn’t read
Data from PLC in 5 Sec, RTU will restart Automatic for a new PLC connection.

In above example One byte of PI Block is converted to 8 Digital Input Signal (Internal Variable = VAR) to
be used in Logic.

 w w w . p b s c o n t r o l . c o m

Page 148

 pbsSoftLogic User’s Manual 2019

In above example 8 Internal Variable (DO0 to Do 7) is packed as one byte and written to POW_0 byte.

 w w w . p b s c o n t r o l . c o m

Page 149

 pbsSoftLogic User’s Manual 2019

14 – SQLite Configuration, RTU local data Archiving and Automatic
synchronization with MS SQL Server

pbsSoftLogic supports SQLite Driver for RTU local data archiving . For detail information about SQLite
please refer to https://www.sqlite.org/ you can synchronize SQLite in RTU with MS SQL Server in
Control room automatically with help of this driver.

For adding SQLite to you project , use SQLite Driver to add to project Driver list .

You can define one instance of SQLite driver to project.

In pbsSoftLogic Directory you can see sqlite directory with following contents :

You need to transfer sqllog.db file to RTU by Filezilla. You can copy it in SD card of RTU .

For ADAM-3600 RTU External SD card path is /media/mmcblk1p1

When you make driver, pbsSoftLogic will make default configuration for you in driver directory.

 w w w . p b s c o n t r o l . c o m

Page 150

https://www.sqlite.org/

 pbsSoftLogic User’s Manual 2019

Options.xml file:

 w w w . p b s c o n t r o l . c o m

Page 151

 pbsSoftLogic User’s Manual 2019

SQLSyncUrl : you can synchronize data by Master SCADA Database by two solution :

- Using Web Service to use any type of DBMS in Control room
- Direct Synchronization with MS SQL Server

When SQLSyncUrl is blank , Web service Method is disabled .

RTUName : Each RTU in the Network should has unique Name for archiving data in control room . RTU
name is also used to archive data in Control Room Database directly in pbsHMI database format.

When you are using pbsHMI in Control room , each tag has a prefix in pbsHMI . Suppose your tag name
in RTU is Tag1 and in pbsHMI with modbus TCP driver its name is ModbusTags.Device1.Tag1 . Then you
need to use ModbusTags.Device1 as RTUName option . When SQLite driver is sending data to Control
room , it will use {RTUName}+”.”+{TagName } as signal name . So pbsHMi can easily use data that is
send by SQLite driver for backfilling and reporting . It is not affect Instant data value in pbsHMI
because SQLite Driver is directly archive data in Database of pbsHMI .

OfflinePath : when RTU is offline and there is no communication with master SCADA to synchronize data
between RTU and SQL Server in Control room , RTU will archive Data in this Path . To be sure that Path is
exist in RTU . Suppose you will set this path to /home/data then data directory must be in home
directory for proper operation of driver.

OfflinePath2 : SQLite driver can send data to two master SCADA in the same time . This Path is for
second Control room. Operation is same as OfflinePath

LogCyclicAtMin : Will log data exactly at every LogCyclicAtMin . Suppose you set this value to 5 then
SQLite driver will log data at xx:00 , xx:05 , xx:10 , xx:15,xx:20,xx:25,xx:30,xx:35,xx:40,xx:45,xx:50,xx:55,…

This data logging is not related to RTU is offline with master SCADA or it is online.

SQLDatabase : full path of sqlite database . Like /media/mmcblk1p1/sqllog.db

Logchanges : not used .

SQLServerName : IP address of SQL Server in Control room .

SQLServerName2 : IP address of second SQL Server in Control room . If blank disable.

SQLServerUser : User name of MS SQL server in control room .

SQLServerPassword: Password of MS SQL server in control room.

Please notice that If you are using two MS SQL Server to synchronize data , both should has same user
name and password for proper operation of SQLite driver .

SQLServerDBName : Database name in SQL Server . you need to use pbsHMI database in control room .

w w w . p b s c o n t r o l . c o m

Page 152

 pbsSoftLogic User’s Manual 2019

SQLiteRTULogEnable : if set to 1 , Data will archive in RTU in SQLite format . If set to 0 , Data is only send
to SQL Server in Control room and SQLite is not used in RTU . But Backfilling is working without problem
in this Mode.

You can use pbsSoftLogic SQLite Editor to set all above parameters . for using SQLite Editor , in Driver
List , Right Click and select Edit .

For saving configuration , right click on any point in SQLite Editor form and select Save menu .

SQLiteTags.xml: you can define Tags in this file. Only you need to define tag name. You can define
maximum 1024 Tags for SQlite Driver.

 w w w . p b s c o n t r o l . c o m

Page 153

 pbsSoftLogic User’s Manual 2019

 w w w . p b s c o n t r o l . c o m

Page 154

 pbsSoftLogic User’s Manual 2019

You should write all above signals in your logic. Like following sample:

At each cycle, logic will write Sqlite Signals value to Driver. Driver has internal memory for save all SQLite
signals. When it is time for logging, driver will read all internal memory and save them on the SQLite
database with current time value for all signals. SQlite driver is not buffering all signal changes and only
will save signals vale at logging time.

There are many free SQLite browser and management utility in the market.

You can use following as sample:

SQLite DB Browser : http://sqlitebrowser.org/

SQLite Studio : http://sqlitestudio.pl/

SQLite Expert : http://www.sqliteexpert.com/

 w w w . p b s c o n t r o l . c o m

Page 155

http://sqlitebrowser.org/
http://sqlitestudio.pl/
http://www.sqliteexpert.com/

 pbsSoftLogic User’s Manual 2019

Database structure:

Sqllog.db has two main tables:

- TagIndex
- TagData

TagIndex Table Fields:

TagData Table Fields:

When Driver wants to insert one record to database , it will do following tasks :

- Check in TagIndex Table , if Tag name is Inserted before it will get Tag ID
- If Tag Name is not inserted into TagIndex , It will insert TagName and will get new TagID
- With TagID , TagValue and TagDT(Data Time) , Driver will insert one record into TagData Table

In other words, TagIndex is Definition of tags (record number is equal to Number of Tags) and TagData is
real data archiving in database. TagData will increase based on number of Records in the database.

TagDT is Elapsed Time which is seconds from 1/1/1970.

You can use following view to see readable view from database: (VW view is already in the sqllog.db)

 w w w . p b s c o n t r o l . c o m

Page 156

 pbsSoftLogic User’s Manual 2019

You can easily transfer sqllog.db to your server in control room and open it by any SQLite browser and
analysis stored data.

 w w w . p b s c o n t r o l . c o m

Page 157

 pbsSoftLogic User’s Manual 2019

MS SQL Server setting : you need to define pbsHMI Database in SQL Server at control room and define
one User with password to use in SQLite Driver . Please do following steps :

1- Make a new database in SQL Server ,name it pbsHMI.
2- Use SQL Script that is in SQLite Directory of pbsSoftLogic or use Database directory of pbsHMI
3- Run SQLServerData.sql and SQLServerIndex.sql to make data and index tables in pbsHMI

Databse
4- Run fnDateTimeToFileTime.sql , SqliteTimesynch.sql and SQLiteWrite.sql to make all necessary

Stored procure and Scalar functions in pbsHMI Database

5- In SQl Server Management studio , Use “Security” item and open “Login” segment .
6- Right click in Login and select New Login

 w w w . p b s c o n t r o l . c o m

Page 158

 pbsSoftLogic User’s Manual 2019

 6 – In Login Properties page type user name for example “sqlite” and set password .Remove pass
policy , expiration and user should change password in next login . you will use this user and password
in SQLite driver options .

 7 – select pbsHMI as default database .

8 – select pbsHMI Database , Select Security and open Users and right click on user to make new user.

 w w w . p b s c o n t r o l . c o m

Page 159

 pbsSoftLogic User’s Manual 2019

9 –use same user that you make for SQL server “sqlite” and redefine it here.

10 – Click on ok to define user .

11 – Select properties of pbsHMI Database

 w w w . p b s c o n t r o l . c o m

Page 160

 pbsSoftLogic User’s Manual 2019

12 – select permissions Page and Grant Connect , Execute , Insert , Update , Delete and select
functionality to sqlite user . In this stage SQL Server is ready for proper operation with SQLite driver .

13 – To be sure pbsHMI Database collation is not Arabic , Persian , … and only Latin like
SQL_Latin1_General_CP1_CI_AS will communicate with RTU

14 – To be Sure SQL Server Authentication is SQL Server and Windows

 w w w . p b s c o n t r o l . c o m

Page 161

 pbsSoftLogic User’s Manual 2019

15 – Check in Windows Firewall. TCP Port 1433 should be allowed in both inbound and outbound rules.

16 – Check in Windows Firewall. SQLBrowser.exe utility should be in Allowed programs List .you can find
SQLBrowser.exe Path from C:\Program Files (x86)\Microsoft SQL Server\90\Shared\sqlbrowser.exe

To be sure SQL Server and SQL Server Browser Services are started properly.

17 – Open SQL Server Configuration Utility and open SQLServer Network Configuration.

To be sure Named Pipes and TCP/IP protocols are enabled. You can Make Them Enable by Right Click on
each Item and select Enable Option.

Double click on TCP/IP Protocol and select IP Tab.

Scroll Down to IPALL and write TCP Port 1433.

 w w w . p b s c o n t r o l . c o m

Page 162

 pbsSoftLogic User’s Manual 2019

18 – Open property page of main SQL server instance and select Connections.

To be sure Allow Remote Connections to this server is checked.

19 – Restart SQL Server Service.

20 – In RTU edit /etc/freetds/freetds.conf file and find global part setting and do following changes :

20 – To be sure that Offline Path, Offline Path2 and SQLite Database are existing inside RTU.

SQLite Driver with SQL Server Automatic synchronization is only work on AMS-R3010 RTU , pbs2010GW
,pbs2012GW , ADAM-3600 and UNO1252G .

 w w w . p b s c o n t r o l . c o m

Page 163

 pbsSoftLogic User’s Manual 2019

15 – OPC UA Server configuration for RTU

pbsSoftLogic is supporting OPC UA Server functionality for ADAM-3600 and AMS-R3010 RTU .

pbsSoftLogic is using OpenOPCUa (http://www.openopcua.org) technology for implementing OPC UA
functionality .

For detail information about OPC-UA please refer to www.opcfoundation.org

For adding OPC UA Server driver to your project from new driver list page, select OPCUaServer Driver:

Select a unique name for your driver. You can only define one OPC UA Driver for a project.

Click on Make Driver button, pbsSoftLogic will make default configuration in driver directory.

In Driver directory you can see following files:

You need to do configuration for options.xml and OPCUaTags.xml files. Other files are systematic and
generated by pbsSoftLogic when you save project settings.

 w w w . p b s c o n t r o l . c o m

Page 164

http://www.opcfoundation.org/

 pbsSoftLogic User’s Manual 2019

 OpenOPCUaCore Server should install on your RTU and running automatic at boot time for proper
operation of OPC UA Driver.

Options.xml file :

TCPPort = you need to assign not used TCP port for OPC UA Communication. OPCOpcUa System is using
TCP for communication in physical layer. The IANA registered port for "OPC UA /TCP" is 4840.

OPCUaTags.xml file

OPCUA Tags are defined in this file. In following sample file you can see different tag types. You can define
maximum 1024 OPC UA Tags.

There are following Tag Types:

DI = Digital input = Boolean (Read by Client)

DO = Digital Output = Boolean (Read/Write by Client)

AI = Analog Input (2 Bytes Signed - Read by Client)

UAI = unsigned Analog Input (2 Bytes unsigned - Read by Client)

AO = Analog Output (2 Bytes Signed – Read/Write by Client)

FI = Float Input (4 Bytes Signed - Read by Client)

FO = Float Output (4 Bytes Signed – Read/Write by Client)

LI = Long Input (4 Bytes Signed - Read by Client)

ULI = unsigned Long Input (4 Bytes unsigned - Read by Client)

DBI = Double Input (8 Bytes Signed - Read by Client)

DBO = Double Output (8 Bytes Signed – Read/Write by Client)

 w w w . p b s c o n t r o l . c o m

Page 165

 pbsSoftLogic User’s Manual 2019

You need to write Input Tags (DI , AI , UAI , LI , ULI , FI ,DBI) In logic and read output Tags (DO , AO , FO ,
DBO)

In following sample, UA2:DOTag1 is connected to FB Input Side (Read) and UA2:DITag1, UA2:AITag1,
UA2:FITag1 are connected to FB output side (Write)

 w w w . p b s c o n t r o l . c o m

Page 166

 pbsSoftLogic User’s Manual 2019

When you transfer configuration to RTU, you will see following message that shows OPC UA Systematic
files are also transferred to RTU.

Reset RTU when you did modification in OPC UA Tags and configuration .

 w w w . p b s c o n t r o l . c o m

Page 167

 pbsSoftLogic User’s Manual 2019

OPC UA Client Connection:

You can use any OPC UA Browser utility to connect to RTU by OPC UA protocol.

Softing OPC UA client: It is a free OPC UA Browser that you can download from www.softing.com

Create a new session with following parameters:

End Point URL has following format:

opc.tcp://{RTU IP address} :{ OPC UA TCP Port}/psleUAServer1

Example:

opc.tcp://192.168.1.110:16664/psleUAServer1

OPC UA supports different modes for security. OpenOPCUA supports all modes, but in pbsSoftLogic we
only support Anonymous (No Security)

 w w w . p b s c o n t r o l . c o m

Page 168

http://www.softing.com/

 pbsSoftLogic User’s Manual 2019

OPC UA TCP Port should be defined before for Network and firewall software’s for proper
communication between client and RTU.

Click on Validate connection, it should be changed to green check mark for correct validation.

Click on OK Button, you should see tag Data types, Objects, as following page:

pbsSoftLogic Tags will be found in Objects\PsleUaTags folder .

 w w w . p b s c o n t r o l . c o m

Page 169

 pbsSoftLogic User’s Manual 2019

By double clicking on a tag, it will be included to subscribe tags, so you can get automatic tags changes in
OPC UA Client application.

 w w w . p b s c o n t r o l . c o m

Page 170

 pbsSoftLogic User’s Manual 2019

16 – GSP Client Driver Configuration

User should know GSP protocol concepts for proper using of GSP Driver. For detail Information about
GSP protocol please refer to GSP specification documentation. http://pbscontrol.com/pdf/gsp_spec.pdf

GSP (GPRS/3G for SCADA Projects) protocol is developed for SCADA systems which has following
specification :

- There is no stable communication media between RTUs and Master SCADA.
- RTU has dynamic IP address.
- There is only one Valid and static IP address for master SCADA.
- Time Synchronization is required between master SCADA and RTUS.
- Local Data buffering in RTU is required when Communication is offline and sending logged data

to SCADA master after establishing connection.
- Number of total I/O for transition between RTU and Master SCADA is not more than 600 Tags
- There are many RTUs in Project. GSP is designed for SCADA with huge number of RTUs.
- Target project for GSP is power and gas distribution SCADA.
- RTU has low Resources (No need for powerful CPU and too much RAM)

 w w w . p b s c o n t r o l . c o m

Page 171

http://pbscontrol.com/pdf/gsp_spec.pdf

 pbsSoftLogic User’s Manual 2019

Define a new Driver for your project and select GSPClient Driver.

Select a unique name for driver. Click on make driver. pbsSoftLogic will make default configuration for
you . pbsSoftLogic will make two configuration file in driver directory .

Options file:

MasterIPAddress : Master IP address for sending GSP frame to SCADA server . We developed Free GSP
OPC Server for master SCADA which you need to install it at master.

RTUID : Each RTU should has unique Numeric ID (1 , 2, 3, ..) for communication with master SCADA .
Maximum ID can be 65535.

TCPPort : TCP Communication port . It should be same value for all RTUs and Master OPC server. You
need to unblock this port number in your network for proper communication. Please refer to your IT
team to assign one TCP port for your project.

SendGSPPeriod : RTU will send data based on this time . If value is less than 60 , it will send every n sec ,
but if it is more than 60 , it will send exactly on Every n Min . Suppose you set this parameter to 300.
Then it will send exactly on following time xx:0 ,xx:5 , xx:10 , xx:15 ,xx:20 ,xx:25 , xx:30 , xx:35 , xx:40 ,
xx:45 ,xx:50 , xx:55 ,xx+1:0,…

 w w w . p b s c o n t r o l . c o m

Page 172

 pbsSoftLogic User’s Manual 2019

SendbyChanges : RTU Will send data when SendByChange SYS tag is triggered to high .

LogPath : if RTU couldn’t send GSP frame to master SCADA for 3 times retry , then it will save GSP frame
in a local binary file which is located In LogPath . For example /home/gspdata/

Every time communication established to master SCADA, GSP will send all saved file to Master OPC
Server. This Directory should be created in RTU.

OfflineSec : if RTU couldn’t communicate with master SCADA in OfflineSec , then CommOnline Signal
will change to 0 . When RTU has connection with Master SCADA CommOnline has value 1 .

You can restart RTU when CommOnline is dropped to 0 especially when GPRS/3G is using for
communication with master SCADA.

GSPTags.xml file

pbsSoftLogic supports GSP client driver , so it is like Slave drivers . you need to define Tags and Write
input tags and read Output Tags in your logic.

In following figure you can see different types of GSP tags :

First four tags are system tags. Please do not change name, type and address.

 w w w . p b s c o n t r o l . c o m

Page 173

 pbsSoftLogic User’s Manual 2019

SendByChange : When Change from 0 to 1 in your logic , GSP Driver provide GSP frame and start to
send to server .

CommOnLine : When GSP Driver is sending Frames to Master and getting answer from master ,
CommOnLine is set to 1 . If OfflineSec is passed and GSP driver couldn’t send any frame to master ,
CommOnline will change to 0 .

SaveByChange : When Change from 0 to 1 in logic , GSP Driver is reading current value of GSP Tags and
save them in RTU Flash for sending to Master based on scheduling that is set for driver . SaveByChange
only save data as back fill file and not start communicating with master.

NumOfLogFiles : shows number of Back fill Files in RTU . You can send this value to Master and use it in
Modem Off/ON Logic . Suppose when number of Back Fill files are more than 20 , then make 3G
Modem On until all Back fill files are transferred to Master .

There are following Tag types in GSP:

DI = Digital Input

AI = Analog Input (2 byte Signed)

FI = Float Input (4 Bytes)

LI = Long Input (4 Bytes Signed)

ULI = Unsigned long (4 Bytes Unsigned)

DO = Digital Output

AO = Analog Output (2 Bytes, Signed)

Each Tag Type has an address which is start from 1 and end with 64. So you can define maximum 64 tags
from each type. Please notice that GSP is designed for distribution SCADA projects which has a lot of
RTU but with small number of signals for communications.

Log: if you set Log to 1, last value of Signal will log to RTU flash (Persistent Tag) .

GSP Operation: when Driver detects Communication time, it will first connect to Master SCADA. If RTU
can connect, it will send all tags to master by GSP frame format. When Master OPC server got frame, it
will send server time and check is operator forced any Do or AO signals? If there is Forced Output signal,
Master Will sends Time and DO and AO commands to RTU. If there is no any Output command, Master
is only send Time for synchronization between Master and RTU.

When RTU received correct answer, it will close connection with master.

Because each transaction starts from RTU, So we don’t need Fix IP address in RTU. Only RTU ID is
enough.

w w w . p b s c o n t r o l . c o m

Page 174

 pbsSoftLogic User’s Manual 2019

Configuration of Sample system based on 3G Network

- Suppose you are using APN for SCADA Communication
- In master SCADA you have 3G Modem Like MOXA Oncell3151.
- There are 3 AMS-R3010 RTU at site and need to communicate with Master SCADA by GSP

Protocol . As following Diagram

-
- Suppose you are using TCP port number 18000 for GSP Communication . Set GSP Parameter

“TCPPort” to 18000
- When Setting GSP Driver parameter , you need to set APN IP of MOXA 3G Modem for each

RTU as “MasterIPAddress” parameter .
- Give unique name for each RTU in “RTUID” parameter.
- In MOXA OnCel3151 enable DHCP Server functionality.

 w w w . p b s c o n t r o l . c o m

Page 175

 pbsSoftLogic User’s Manual 2019

-
- Set DHCP Server , Start IP Address and Maximum dynamic Users .
- Enable Static IP mapping and Configure Modem to give always static IP address Like

192.168.1.100 to SCADA Server .
- Define port forwarding in MOXA Modem , forward all TCP frames that is coming from APN with

port Number 18000 will map to SCADA Server (IP = 192.168.1.100) by same port 18000 .
- Download and install GSP Master OPC Server from www.pbscontrol.com on SCADA Server .
- When you configure GSP OPC Server set IP address of Server in “MasterIPAddress” parameter(

192.168.1.100) and set “TCPIPPort” to 18000 .

 w w w . p b s c o n t r o l . c o m

Page 176

http://www.pbscontrol.com/

 pbsSoftLogic User’s Manual 2019

17 – IEC870-5-103 Master Driver Configuration

pbsSoftlogic version 1.6.5 supports IEC870-5-103 master protocol for communication with protection
relays .

Up to 8 networks can be configured for a controller to communicate with different protection relays.

For each network, you can define up to 1024 IEC tags.

 w w w . p b s c o n t r o l . c o m

Page 177

 pbsSoftLogic User’s Manual 2019

Defining IEC870-5-103 master driver in pbsSoftLogic :

- open project option page
- right click on Driver list and select IEC103Master Driver

-
- Write unique driver name and select Instance. Instance number is between 1 and 8 and shows

IEC103 Network number.
- Click on make driver button.
- pbsSoftLogic will make default configuration files at driver directory for current project .

o options.xml communication parameters settings
o IEC103Devices.xml IEC103 slave device configuration and Tags

Options.xml file content:

 w w w . p b s c o n t r o l . c o m

Page 178

 pbsSoftLogic User’s Manual 2019

IEC103Devices.xml file content

For each protection relay on a network, you should define one <Device> Tag.

<Device> Name Attribute: for each Relay in a network, you should consider unique name

<Device> address: Data Link layer and ASDU Address of relay.

<Device> ResetLinkFC : shows which Function code is use for resting communication with relay . 0 or 7

<Device> PollPerid : shows period of sending class1 or class2 request to relay in msec . IEC103 driver is
sending one class1 request for reading events and one class2 request for reading analog signals
periodically.

<Device> CommTimeoutSecSP : shows after how many sec , driver will reset and reinitialized
communication with relay when there is no communication with relay .

<Device>SendGIPeriod : Shows after how many min , IEC103 driver will send GI command to relay .

<IEC103Tags><Tag> Name : Unique name for a tag in a device .

<IEC103Tags><Tag> TypeInd :

o TYPE IDENTIFICATION 1: Time-tagged message
o TYPE IDENTIFICATION 2: Time-tagged message with relative time
o TYPE IDENTIFICATION 3: Measurands I
o TYPE IDENTIFICATION 9: Measurands II

 w w w . p b s c o n t r o l . c o m

Page 179

 pbsSoftLogic User’s Manual 2019

<IEC103Tags><Tag>Funtype: Function Type for tag. Please refer to relay IEC103 documentation for
detail function types.

<IEC103Tags><Tag>InfNum: Information Number for tag. Please refer to relay IEC103 documentation for
detail Information Number.

<IEC103Tags><Tag> Position : Position of analog signal in MEASURANDS I and II . Starting from 0.

Sample IEC103 Tags from Siemens 7SK80 Series Relay:

pbssoftLogic Tag definition for some above relay signals :

 <Tag Name="Ia" TypeInd="9" FunType="134" InfNum="157" Position="0" />

 <Tag Name="Ib" TypeInd="3" FunType="160" InfNum="145" Position="0" />

 <Tag Name="Ic" TypeInd="9" FunType="134" InfNum="157" Position="2" />

 <Tag Name="Va" TypeInd="9" FunType="134" InfNum="157" Position="5" />

 <Tag Name="VN" TypeInd="9" FunType="134" InfNum="118" Position="0" />

 w w w . p b s c o n t r o l . c o m

Page 180

 pbsSoftLogic User’s Manual 2019

Sample IEC103 tags from Siemens 7sk80 series relay:

pbssoftLogic Tag definition for some above relay signals :

 <Tag Name="79_ON" TypeInd="1" FunType="40" InfNum="1" Position="0" />

 <Tag Name="79_OFF" TypeInd="1" FunType="40" InfNum="2" Position="0" />

 <Tag Name="79_Block" TypeInd="1" FunType="40" InfNum="3" Position="0" />

 <Tag Name="79_Start_Gn" TypeInd="2" FunType="40" InfNum="15" Position="0" />

<Tag Name="79_Successful" TypeInd="1" FunType="40" InfNum="162" Position="0" />

 w w w . p b s c o n t r o l . c o m

Page 181

 pbsSoftLogic User’s Manual 2019

IEC103 master driver runtime operation:

When IEC103 master driver starts, it will do following sequence:

- send INIT command to relay (FC = 0 or FC = 7)
- Sending Class1 request until getting Identification message ASDU = 5 , COT = resetCU or

ResetFCB
- Send Time Synchronization command to relay TYPE ID = 6 , COT = 8
- Send GI Command
- Sending Class1 Request until getting ASDU = 8 , COT = End of GI
- Send Class 2 for reading analog signals
- Send Class 1 for reading Events
- Send Class 2 for reading analog signals
- Send Class 1 for reading Events
- If it is time for sending GI command , send GI command
- If there is no communication from relay side after COMMTimeOutSecSP Sec , make relay offline

and try to initialize relay and repeat above sequence

Note : In current version of IEC103 master driver , Sending Set points and commands are not
supported. So you can use IEC103 driver just for reading events and analog signals for monitoring
purpose from relay.

w w w . p b s c o n t r o l . c o m

Page 182

 pbsSoftLogic User’s Manual 2019

18 – OPC Client Driver Configuration for Win32 Target
pbsSoftlogic Version 1.7 supports Windows 32 Target the same way as Linux and wince target .

There are two windows32 runtime kernels for pbsSofLogic:

- Runtime kernel that is based on OPC standard. (VSLE.exe) we named this kernel PCWIN32 in
project setting. This is pure Dot Net Kernel and is developed by C# .VSLE .exe is mostly used for
Subsystem integration based on OPC technology.

- Runtime kernel that is compiled from Linux and wince kernel c source code for win32. This is
high performance kernel and can be used as PLC/RTU applications on embedded Win32
controller. We named this kernel WIN32 in project setting. This part is talking about Win32
runtime and how we can use it. Win32 Kernel is just based on driver concepts and it has
following drivers built in :

o Modbus RTU/TCP master /Slave
o DNP3 Master/Slave
o IEC870-5-101/104 Master/Slave
o IEC870-5-103 master
o OPC client Driver
o OPC server Driver
o Open API Driver for C interfacing with runtime kernel.

Download latest Win32 target from www.pbscontrol.com . Unzip it on any drive in your controller.
Suppose we unzipped kernel on C:\PSLERT Directory.

 w w w . p b s c o n t r o l . c o m

Page 183

http://www.pbscontrol.com/

 pbsSoftLogic User’s Manual 2019

- psleWin32RT.exe is main application for kernel. It should be in Windows Auto start routine.
- Logic.c11 compiled pbsSoftLogic Logic file. Transferred by pbsSoftlogic Eng
- Logic.cfg compiled pbsSoftlogic Configuration file. Transferred by pbsSoftlogic Eng
- License.lic license file that is linked to MACID of Controller. psleWin32RT.exe will works for 30

min without License file .
- GetMacID.exe utility program for making license file. You need to run getMacID.exe and send

MacID to supplier for getting permanent license file.
- Drvlib : communication driver library
- Fblib : Function block implementation library (c and Lua)
- Lmp : Logic monitoring protocol library
- WtClient.dll main dll file for OPC DA2.0 client driver.

pbsSoftlogic is using FTP for transferring logic and configuration file to Controller . So you need
to install FTP server on target controller with Windows32 OS. Install FileZilla server or use
internal windows FTP Server services and define “root” user with “root” password.
Set C:\PSLERT as default path of FTP server for “root” user. "root” user should has write/read
access to c:\PSLERT directory.

Make a new project and set project setting as following:

Controller Type is Win32.
Logic Scan time (ms): period for reading all inputs, running logic and writing all outputs. We
name this time logic scan time. When you connect and monitor logic you can see real value for
logic scan time.
Logic Scan Time in settings = Real Logic Scan Time + sleep Time
Suppose you set Logic Scan time in Setting page to 50 ms, but real logic scan time is 20 ms . So
kernel will sleep for 30 ms at each cycle.

 w w w . p b s c o n t r o l . c o m

Page 184

 pbsSoftLogic User’s Manual 2019

You can see real logic scan time at bottom side of logic monitoring page. In above sample, real logic scan
time is 6 ms.

When you are using drivers like modbus , you need to add Modbus scan time to logic scan time to
calculate real scan time of whole IO and logic .

Controller RAM Driver (Temp) Path: pbsSoftLogic runtime kernel is using files for keeping static data of
Function blocks. Because at each scan runtime kernel is open, read and write static data to files, so it is
too much better to use ram drive for saving static data files.

You can download very professional and free RAM Disk Driver from
http://memory.dataram.com/products-and-services/software/ramdisk Web Site. We tested Data ram
disk in many projects and it is 100% compatible with pbsSoftLogic .

 w w w . p b s c o n t r o l . c o m

Page 185

http://memory.dataram.com/products-and-services/software/ramdisk

 pbsSoftLogic User’s Manual 2019

Controller IP: you can use PC based controllers like UNO-1150 , UNO-1170 and use separate laptop for
programming . Then you need to set PC Based controller IP here. When programming PC and controller
PC are same, then you can use 127.0.0.1 as Controller IP.

In above sample, we used two UNO-1170 as controllers and one station as programming station.

You need to make two separate project for each UNO-1170.

If you need to pass data between controllers, then you can define modbas-TCP master on one controller
and Modbus-TCP slave on another controller. You can also use DNP3 over TCP and IEC870-5-104 for
communicating between two controllers.

 w w w . p b s c o n t r o l . c o m

Page 186

 pbsSoftLogic User’s Manual 2019

Defining OPC client Driver

Open project setting page and right click on Driver list, then select OPCClient Driver.

Select a unique name for driver and select driver instance. You can connect to 8 OPC server on each
controller in the same time. Each OPC server connection should have unique Instace ID.

Click on “Make Driver” Button. pbsSoftLogic will make basic definition in your project .

 w w w . p b s c o n t r o l . c o m

Page 187

 pbsSoftLogic User’s Manual 2019

OPC client Driver : pbsSoftLogic runtime kernel will connect to other OPC servers DA2.0

OPC Server Driver : pbsSoftLogic runtime kernel will act as OPC Server and other client can connect to it.

In this part, we will talk about OPC Client Driver.

pbsSoftLogic will make a new folder in project directory with same driver name .

 w w w . p b s c o n t r o l . c o m

Page 188

 pbsSoftLogic User’s Manual 2019

 Inside S7_OPC directory , you can see OPCTags.xml file . we will keep all parameters and tags inside
OPCTags.xml file .

For making OPCTags.xml you should use pbsSoftlogic OPC configurator utility at Tools menu .

 w w w . p b s c o n t r o l . c o m

Page 189

 pbsSoftLogic User’s Manual 2019

Defined OPC configuration files: At Top left panel you can see all defined OPC configuration files. These
files are located at \PSLE\OPC folder.

Installed OPC Servers: At Bottom left panel you can see all installed OPC servers on this machine or
remote PC. For browsing OPC servers on remote machine you need to do all setting for OPC on
network for both PC . OPC network operation is dependent too much on Operating systems and it is
out of scope for this document.

For connecting to remote PC , at Edit menu select “Set remote Server” then type Server Name of IP
address for getting all installed OPC servers on that Machine .

For changing to local Machine , from Edit menu select “Set Local Server”.

 w w w . p b s c o n t r o l . c o m

Page 190

 pbsSoftLogic User’s Manual 2019

For defining new OPC Configuration file , right click on “Defined OPC Configuration” panel .

And select “new” menu.

OPC explorer will look at \psle\OPC directory and find all files with OPCXMLn.xml name format and will
make a new file with OPCXML{n+1}.xml name when n is max number in the OPC directory .

You can rename OPC configuration file by running Explorer menu and rename file by windows utilities.

By running refresh Menu, Defined OPC configuration file panel will be refreshed with new names.

After you make a new OPC configuration file, select OPC server at Installed OPC server panel and
connect to OPC server by right click menu.

 w w w . p b s c o n t r o l . c o m

Page 191

 pbsSoftLogic User’s Manual 2019

 From OPC server tags Panel, select all tags that you want to add in configuration. You can use Filter at
right side to find OPC tags. You can press and hold Ctrl Key and select multiple items by left click.

Right click on selected Tags and run “Select” Menu.

String and date data types are not supported in pbsSoftLogic for OPC client Driver.

Following Data Types are supported:

 VT_I2 2 byte signed int
 VT_I4 4 byte signed int
 VT_R4 4 byte real
 VT_R8 8 byte real
 VT_BOOL True=1, False=0
 VT_I1 signed char
 VT_UI1 unsigned char
 VT_UI2 unsigned short
 VT_UI4 unsigned long
 VT_I8 signed 64-bit int
 VT_UI8 unsigned 64-bit int
 VT_INT signed machine int
 VT_UINT unsigned machine int

 w w w . p b s c o n t r o l . c o m

Page 192

 pbsSoftLogic User’s Manual 2019

 At right Panel you can see OPC tag properties:

Tag Access :

OPC server tag has Read Access by client = 1

OPC server tag has write Access by client = 2

OPC server tag has Read/write Access by client = 3

VT_BOOL has different definition in OPC:

 VT_BOOL True=-1, False=0

But in pbsSoftLogic Runtime kernel, it is mapped as following:

VT_BOOL True=1, False=0

 w w w . p b s c o n t r o l . c o m

Page 193

 pbsSoftLogic User’s Manual 2019

After selecting OPC tags, click on “Selected Tags” Tab. you can see list of selected tags and at right side
Tag properties with Tag Value.

When you click on each tag, Tag properties will be update at right panel.

 Click on “Parameters” tab. you can see OPC connection parameter page.

OPC driver uses following parameters:

- OPC Server Group refresh Time
- OPC Server Group percent Dead band
- Instance

Other parameters are for PCWIN32 target and not used in Win32 Target.

 w w w . p b s c o n t r o l . c o m

Page 194

 pbsSoftLogic User’s Manual 2019

OPC Server Group percent Dead band definition from OPC standard:

The percent change in an item value that will cause a subscription callback for that value to a client. This parameter
only applies to items in the group that have Analog signals.

OPC Server Group refresh Time definition from OPC standard:

The fastest rate at which data changes may be sent to client for items in this group.

Instance:
Instance number is same as driver instance number.

For saving configuration , click on configuration name and save it by right click menu .

OPC configuration file will be saved at \psle\OPC directory. This file is same file that is used in OPC client
driver configuration.

 w w w . p b s c o n t r o l . c o m

Page 195

 pbsSoftLogic User’s Manual 2019

For saving OPC configuration as OPC driver configuration, at “file” menu, select “Save as Driver File”

Save and close configuration file then run “Save as Driver File…” menu and select Driver path.

You should select same folder that is made by pbssoftlogic when you define OPC Client driver in project
setting page.

It will copy OPC configuration file at driver folder with OPCTags.xml name.

 w w w . p b s c o n t r o l . c o m

Page 196

 pbsSoftLogic User’s Manual 2019

 Using OPC Tags in your logic :

- use InputSignal or Outputsignal Elements in your logic
- Right click on Inputsignal or Outputsignal elements
- Select “DRV Signals”
- Select OPC signal from Driver list signals.

- After finish logic , compile logic from “project/compile” menu.
- Transfer configuration file to Controller by “Project/Transfer Configuration” menu.
- Transfer Logic file to controller by “Project/Transfer Logic” menu.
- Restart runtime kernel. (psleWin32RT.exe)

When you transfer Logic and configuration to controller, pbssoftLogic will use following files and change
their names as following: (suppose project name is win32)

Win32.lx : it is compiled configuration file will copy to controller and its name changed to logic.cfg

Win32.c11 : it is compiled logic file will copy to controller and its name changed to logic.c11

 w w w . p b s c o n t r o l . c o m

Page 197

 pbsSoftLogic User’s Manual 2019

OPC client Driver runtime specifications:

- Remote Server name: 128 characters

- OPC server name: 256 characters

- OPC Item name: 128 characters

- OPC Server DA 2.0

- Selected OPC Items will read one time and Driver start time, after that OPC server should write
Changes by call back to OPC client Driver.

- Maximum Number of OPC Tags for each instance: 1024

- Maximum Number of OPC instance: 8

 w w w . p b s c o n t r o l . c o m

Page 198

 pbsSoftLogic User’s Manual 2019

19 – User defined function block by Lua Scripting and C Language
pbsSoftLogic has open structure for adding new Function block by user to platform .

User defined FB (UDF) has the same performance as internal FB in pbsSoftLogic.

You need to use Lua scripting language for writing UDF code and with help of XML file you can define
UDF body .

Lua – www.Lua.org- is one the most famous scripting language in the market and it is used in many
projects and applications world wised.

pbsSoftLogic Linux runtime engine supports Lua Ver 5.2.2 which is latest version .

For learning Lua language , please refer to www.lua.org web site .

Three steps are required for adding UDF to pbsSoftLogic:

1- Defining FB Input / Output structure
2- Writing FBD Inside by Lua scripting

C Source code of all internal FB are included in pbsSoftLogic. You can use these source codes to make
new FB and expand platform.

In this section, we will describe details of above steps with implementation of a simple UDF.

UDF is not related to a specific project, but it will include to platform.

For defining new UDF, you need to define new FB Group. FB Group includes many FBs.

Suppose we want to define a new FB Groups for IEC1131-3 standard and add two Function Block for RS
and SR Flip Flop. In following figure you can see the definition of RS and SR flip flop from IEC1131-3
standard.

w w w . p b s c o n t r o l . c o m

Page 199

http://www.lua.org-/
http://www.lua.org/

 pbsSoftLogic User’s Manual 2019

Step1: Define FB body. Edit FBDefh.xml file in \PSLE\cfg directory.

Run Windows FB Editor Utility from Tools menu in pbsSoftLogic Editor. FB editor can be use for defining
new FB body and CSharp implementation for Simulator and Windows Runtime Kernel.

Open FB header file from File menu and select “open FB Header”. It will open FBDefh.xml file.

FBDefh.xml file contains all pbsSoftLogic FB header (internal and UDF).

 w w w . p b s c o n t r o l . c o m

Page 200

 pbsSoftLogic User’s Manual 2019

For each FB group, there is a Group Tag in FBDefh.xml file with following format:

Above Group definition is for Counters Group. FBList tag contains all FB for this group. For each FB, there
is an FBDef Tag with Name and DetailName elements.

Copy and paste counters Group Tag and change its tags as following:

Save FBDefh.xml file. You can define any number of FB header definition in FBList tag .

DetailName value is relative path of FB body definition XML file. Name value is Name of FB that is shown
in FBeditor .

As a naming standard we will use following format for FB body definition file:

{groupName}_{FBName}.xml and all FB Body files are locate at \FBD\ directory .

 w w w . p b s c o n t r o l . c o m

Page 201

 pbsSoftLogic User’s Manual 2019

Open \FBD\ directory and copy and paste one of existing FB Body files, change its name to
IEC11313_RS.xml .change its content as following:

 w w w . p b s c o n t r o l . c o m

Page 202

 pbsSoftLogic User’s Manual 2019

Open \FBD\ directory and copy and paste one of existing FB Body files, change its name to
IEC11313_SR.xml .change its content as following:

 w w w . p b s c o n t r o l . c o m

Page 203

 pbsSoftLogic User’s Manual 2019

In this stage you can use IEC11313 group in SoftLogic Editor. Close FBEditor and run it again.

You can see a new IEC11313 group is added to FBEditor and it has two Function Blocks.

Drag and drop RS and SR Flip flops in a new application. RS and SR Flip Flops are ready to use in any
Function block application.

 w w w . p b s c o n t r o l . c o m

Page 204

 pbsSoftLogic User’s Manual 2019

19-1 Lua UDF Development

Lua scripting language is developed at 1993 by Roberto Ierusalimschy , Walder Celes and Luiz Henrique
at university of PUC-Rio Brazil .(http://www.lua.org/authors.html) . For detail information about Lua ,
please refer to www.lua.org .

For quick Lua introduction, please visit http://www.inf.puc-rio.br/~roberto/talks/ppl-2012.pdf

In last 20 years Lua is used in many projects and devices:

TVs (Samsung), routers (Cisco), keyboards (Logitech), printers (Olivetti), set-top boxes
(Verizon), M2M devices (Sierra Wireless),calculators (TI-Nspire),Wireshark, Snort, Nmap, VLC Media Player,
LuaTeX

Adobe Lightroom One million lines of Lua code

Slashdot: News for nerds, Feb 1, 2012:
“Wikipedia Chooses Lua as its new template language “

Lua is used in many game development environments as programming framework:

Corona SDK - http://www.coronalabs.com/products/corona-sdk/

Gideros Studio - http://www.giderosmobile.com/

Moai – http://www.getmoai.com/
Love -https://love2d.org/

Codea - http://twolivesleft.com/

Lua is fast, small and very reliable. Lua is an active project and worldwide accepted as scripting language.
So we selected Lua instead of ST as pbsSoftLogic scripting language for developing user defined Function
blocks.
Lua Virtual machine is integrated to pbssoftlogic Linux Runtime kernel Version 1.5 and logic simulator.
We didn’t include Lua in pbsSoftLogic windows Runtime because you can develop UDF by C# and no
need for Lua . We will use Lua for developing UDF for Linux based controllers and logic simulator.

w w w . p b s c o n t r o l . c o m

Page 205

http://www.lua.org/authors.html
http://www.lua.org/
http://www.inf.puc-rio.br/%7Eroberto/talks/ppl-2012.pdf
http://www.coronalabs.com/products/corona-sdk/
http://www.giderosmobile.com/
http://www.getmoai.com/
https://love2d.org/
http://twolivesleft.com/

 pbsSoftLogic User’s Manual 2019

When you use Lua for developing UDF, you don’t need to use Linux cross compiler.
For developing Lua UDF you need to do following steps:

1 - Defining FB Input / Output structure – define UDF body. This step is same as C# /C UDF
development.
2 – Write UDF script by pbsSoftLogic Lua Editor.
3 – Compile Lua source code for checking programming errors.
4 – Test Lua UDF by Logic simulator.
5 – Transfer Lua source code to controller.

We will compile Lua source code just for checking programming errors. We do not transfer compiler
code to linux controller. When you transfer Lua UDF to controller, it will transfer Lua UDF source code.

pbsSoftLogic Linux controller , compiles Lua UDF source code when it load UDF.

w w w . p b s c o n t r o l . c o m

Page 206

 pbsSoftLogic User’s Manual 2019

19 – 2 Lua Language basics

Lua is dynamically typed language. There are eight basic type in Lua :

- Nil – no value , default value of a variable before initialization
- Boolean : has value false and true
- Number :double precision floating point
- String: sequence of characters. like “pbsSoftlogic”
- userdata (not used in pbsSoftlogic)
- thread (not used in pbsSoftlogic)
- table (will use for passing FB input outputs to Lua)

Tables are the main data structure in Lua . Look at following samples:

a = {} -- create a table and store its reference in 'a'
k = "x"
a[k] = 10 -- new entry, with key="x" and value=10
a[20] = "great" -- new entry, with key=20 and value="great"
print(a["x"]) --> 10
k = 20
print(a[k]) --> "great"
a["x"] = a["x"] + 1 -- increments entry "x"

In pbsSoftLogic we pass FB input output values by Table. In following figure you can see very simple
pbsSoftLogic Lua function . You should follow same structure for your UDF:

 w w w . p b s c o n t r o l . c o m

Page 207

 pbsSoftLogic User’s Manual 2019

Obji = input table to FB. It contains all FB inputs. The first fifth element is used by pbsSoftlogic Linux
kernel to pass following data to any UDF:

Obji[“1”] = path of RAMDisk Drive in Linux Controller for saving static data . for example it is like
“/mnt/ramdisk/” it include “/” .

Obji[“2”] =unique Identifier of UDF .

Obji[“3”] = name of program. In Linux Kernel it is always “logic”

Obji[“4”] = SRAM address in controller . It is RAM with battery backup. It include “/”

Obji[“5”] =SD address . It is External flash SD card address for data logging. It include “/”

Points:

- UDF inputs start from key “6”.
- All key value should be as string number: “1” ,”2” ,”3”,…
- All inputs are pass as string to Lua . So you should change its type to number by tonumber

function. Example in1 = tonumber(obji[“6”]) . This is value of first UDF input.

objo is return table from Lua.

Points:

 w w w . p b s c o n t r o l . c o m

Page 208

 pbsSoftLogic User’s Manual 2019

- objo key start from”1”.
- objo[“1”] = first UDF output
- objo[“2”] = second UDF output
- objo[“n”] = n’th UDF output n<32
- All values will return to pbsSoftlogic linux kernel by string format by tostring function .
- objo[“1”] = tostring(out1)
- Last statement in Lua should be return objo .

pbsSoftLogic included Lua editor . Open Lus editor from tools menu.

Run Lua FB editor. You can see following environment:

 w w w . p b s c o n t r o l . c o m

Page 209

 pbsSoftLogic User’s Manual 2019

- Source code of Lua UDF is at \PSLE\LuaSrc directory.

You can define Lua functions and Lua Function Blocks in pbsSoftLogic .

Lua Function: Function Without static data.

Lua Function Block: Function With Static data.

In Lua FB Editor , execute “New Lua Function” from File menu . It will make NewLuaFun.Lua file at
\PSLE\LuaSrc directory .

Lua FB Editor will make NewLua_Fun function as template for Lua Functions:

 w w w . p b s c o n t r o l . c o m

Page 210

 pbsSoftLogic User’s Manual 2019

There is no memory in Lua Functions. Input signals will pass to function and output values will calculate
based on current value of inputs.

At following figure, we calculate (x^2 + Y^2)^0.5

In Lua FB Editor, execute “New Lua Function Block” from File menu. It will make NewLuaFB.Lua file at
\PSLE\LuaSrc directory.

Lua FB Editor will make NewLua_FB function as template for Lua Function block:

In this Lua FB sample, we consider following variables:

- Two output signal – ou1 , out2
- Three static signal – state , dt , input1old

o State shows current state of FB.
o dt is date time signal . In Lua os.time() function returns seconds from 1/1/1970 . When

you compare current time with dt , it shows seconds passed from dt .
o input1old is used for detecting rising edge of input1 signal .

 w w w . p b s c o n t r o l . c o m

Page 211

 pbsSoftLogic User’s Manual 2019

In pbsSoftlogic static data is simulated by a data file In Controller ram disk.

If Logic scan time is set to 500 msec , then every second , whole logic will execute for two times .

For each function block we have one static data file which is located on ram disk.

Because static data files are located on ram disk, so continues read /write of static data files will not
make damage on controller and we will not lose system performance.

Static data file name is generated from function Block name, function block unique ID and logic name.

Function Block Unique ID – TmpPID - and Logic name – TmpLogic - are passed by pbsSoftLogic Linux
kernel to function block. In Static data file name, you need to change function block name to your UDF
name. For above FB, Static data file is as following figure:

We read static data file, line by line and find value of static signals and initialize static data tags at
beginning of FB.

 w w w . p b s c o n t r o l . c o m

Page 212

 pbsSoftLogic User’s Manual 2019

Always consider output signals as static and save their values in static data file. Normally output signals
are not calculated in function block at each cycle, so you need to use old value of output signals in
current cycle.

After reading input signals and static tags, you need to solve your logic.

Always remember that your logic is executing many times in a second.

For detecting rising edge or falling edge of a signal, you need to compare current value of signal with
value of signal at last cycle.

Input1 is current value of signal and input1Old is last value of signal.

 At end of function block, always you need to map current value of signal to old value.

Normally function block is in a specific state at each cycle. So you need to define state static tag and set
its value by input signal changes or internally in the function block. In above example when there is
rising edge at Input1 signal, we will set state to 1 and will save time by os.time() function . os.time()
returns current time from 1/1/1970 in seconds .

In following code, when Inut1 signal has falling edge, FB will go to state zero.

 w w w . p b s c o n t r o l . c o m

Page 213

 pbsSoftLogic User’s Manual 2019

In following code, when FB is in state one, it will map Input2 to out2 and sets out1 to 1 for 10 seconds. If
before 10 seconds, falling edge detecting for Input1 signal, FB goes to state 0.

For calculating elapsed time always use above technique.

After solving your logic, you need to save static data and write output signals.

Lua expression from programming in Lua 3ed written by Roberto ierusalimschy :

Lua supports the usual arithmetic operators: the binary ‘+’ (addition), ‘-’ (subtraction),‘*’ (multiplication), ‘/’
(division), ‘^’ (exponentiation), ‘%’ (modulo), and the unary ‘-’ (negation). All of them operate on real numbers.
For instance, x^0.5 computes the square root of x, while x^(-1/3) computes the inverse of its
cubic root.
The following rule defines the modulo operator:
a % b == a - math.floor(a/b)*b For integer operands, it has the usual meaning, with the result always having the
same sign as the second argument. For real operands, it has some extra uses. For instance, x%1 is the fractional part
of x, and so x-x%1 is its integer part. Similarly, x-x%0.01 is x with exactly two decimal digits:
x = math.pi
print(x - x%0.01) --> 3.14

Lua provides the following relational operators:
< > <= >= == ~=
All these operators always produce a boolean value.

The == operator tests for equality; the ~= operator is the negation of equality. We can apply both operators to any
two values. If the values have different types, Lua considers them not equal. Otherwise, Lua compares them
according to their types. Specifically, nil is equal only to itself.

The logical operators are and, or, and not. Like control structures, all logical operators consider both the boolean
false and nil as false, and anything else as true. The and operator returns its first argument if it is false; otherwise, it
returns its second argument. The or operator returns its first argument if it is not false; otherwise, it returns its
second argument:

 w w w . p b s c o n t r o l . c o m

Page 214

 pbsSoftLogic User’s Manual 2019

print(4 and 5) --> 5
print(nil and 13) --> nil
print(false and 13) --> false
print(4 or 5) --> 4
print(false or 5) --> 5

Both and and or use short-cut evaluation, that is, they evaluate their second operand only when necessary. Short-cut
evaluation ensures that expressions like (type(v)=="table"and v.tag=="h1") do not cause run-time errors: Lua will
not try to evaluate v.tag when v is not a table.

A useful Lua idiom is x=x or v, which is equivalent to if not x then x = v end That is, it sets x to a default value v
when x is not set (provided that x is not set to false).

Another useful idiom is (a and b)or c, or simply a and b or c, because and has a higher precedence than or. It is
equivalent to the C expression a?b:c, provided that b is not false. For instance, we can select the maximum of two
numbers x and y with a statement like max = (x > y) and x or y When x>y, the first expression of the and is true,
so the and results in its second expression (x), which is always true (because it is a number), and then the or
expression results in the value of its first expression, x. When x>y is false, the and expression is false and so the or
results in its second expression, y.
The not operator always returns a boolean value:
print(not nil) --> true
print(not false) --> true
print(not 0) --> false
print(not not 1) --> true
print(not not nil) --> false

Lua denotes the string concatenation operator by .. (two dots). If any operand is a number, Lua converts this number
to a string.

Operator precedence in Lua follows the table below, from the higher to the lower
priority:
^
not # - (unary)
* / %
+ -
..
< > <= >= ~= ==
and
or

All binary operators are left associative, except for ‘^’ (exponentiation) and ‘..’
(concatenation), which are right associative. Therefore, the following expressions
on the left are equivalent to those on the right:
a+i < b/2+1 <--> (a+i) < ((b/2)+1)
5+x^2*8 <--> 5+((x^2)*8)
a < y and y <= z <--> (a < y) and (y <= z)
-x^2 <--> -(x^2)
x^y^z <--> x^(y^z)

Assignment is the basic means of changing the value of a variable or a table
field:
a = "hello" .. "world"
t.n = t.n + 1

 w w w . p b s c o n t r o l . c o m

Page 215

 pbsSoftLogic User’s Manual 2019

Lua allows multiple assignment, which assigns a list of values to a list of
variables in one step. Both lists have their elements separated by commas. For
instance, in the assignment
a, b = 10, 2*x

if then else
An if statement tests its condition and executes its then-part or its else-part
accordingly. The else-part is optional.
if a < 0 then a = 0 end
if a < b then return a else return b end
if line > MAXLINES then
 showpage()
 line = 0
end

while
As the name implies, a while loop repeats its body while a condition is true. As
usual, Lua first tests the while condition; if the condition is false, then the loop
ends; otherwise, Lua executes the body of the loop and repeats the process.
local i = 1
while a[i] do
 print(a[i])
 i = i + 1
end
Numeric for
The for statement has two variants: the numeric for and the generic for.
A numeric for has the following syntax:
for var = exp1, exp2, exp3 do

<something>
end

This loop will execute something for each value of var from exp1 to exp2, using
exp3 as the step to increment var. This third expression is optional; when
absent, Lua assumes 1 as the step value. As typical examples of such loops,
we have

for i = 1, f(x) do print(i) end

for i = 10, 1, -1 do print(i) end
If you want a loop without an upper limit, you can use the constant math.huge:

for i = 1, math.huge do

if (0.3*i^3 - 20*i^2 - 500 >= 0) then
print(i)
break

end
end

 w w w . p b s c o n t r o l . c o m

Page 216

 pbsSoftLogic User’s Manual 2019

19-3 Writing C code for Linux and cross compiling of UDF

You can develop your UDF by C Language too . Developing UDF by C has advantage and disadvantage.

Advantage : Performance of UDF with C Language is better than Lua Scripting .

Disadvantage : you should compile your UDF for each RTU and Operating systems .

For RTUs which is running Debian Based OS , you can compile UDF directly on the RTU .

But for RTUs without gcc , you need to use cross compiler to compile UDF .

For cross compiling for embedded linux you need to have following software’s:

1 – Ubuntu Linux distribution. You can download from http://www.ubuntu.com/download/desktop

2 – Install ubuntu on a Virtual Machine like VMWare , or install it on a PC .

3 – Download eclipse IDE from http://www.eclipse.org/downloads/ and download Eclipse IDE for C/C++
Developer for linux 32 or 64 bit .

4 – Cross Compiler for your RTU .

You can find source code of all pbsSoftLogic at c:\PSLE\CSrc directory.

Open eclipse IDE and make a new C Project. Project name should be exactly same name of UDF group,
for our example “IEC11313”

 w w w . p b s c o n t r o l . c o m

Page 217

http://www.eclipse.org/downloads/

 pbsSoftLogic User’s Manual 2019

Project Type: Share Library

Toolchain : Cross GCC

Click on Next.

Set Cross Compiler prefixes and cross compiler path as above figure.

Click on finish button.

Copy paste one of existing source code from CSrc directory to new project directory .

Suppose you will copy counter source file (MainCounters.c) to IEC11313 directory . Rename
MainCounters.c to MainIEC11313.c .

Select IEC11313 project in eclipse and refresh project to include MainIEC11313.c file to project .

 w w w . p b s c o n t r o l . c o m

Page 218

 pbsSoftLogic User’s Manual 2019

There is include directory in CSrc folder that need to be included to IEC11313 project . open project
properties in eclipse and add Include directory path to project .

Select release mode as active mode in manage configuration. Add include directory for Debug and
release configuration.

If you use GCC mathematical library in UDF , you need to add m library to project .

 w w w . p b s c o n t r o l . c o m

Page 219

 pbsSoftLogic User’s Manual 2019

In project settings /Miscellaneous enable Position Independent Code –PIC .

Open MainIEC11313.c source code in eclipse. Change name of UpCounter functions to RS and
DownCounter function to SR.

Any C FB has following format:

void RS(pbsObject * Obji, pbsObject * Objo)

Don’t change function format and just change name of function to SR and RS.

obji is list of all inputs to function .

objo is list of all FB outputs .

 w w w . p b s c o n t r o l . c o m

Page 220

 pbsSoftLogic User’s Manual 2019

In Linux kernel first FB input is passed by index 5 of obji . int S = Obji[5].dvalue;

void RS(pbsObject * Obji, pbsObject * Objo)
{
 char TmpPath[64] ;
 char PID[32];
 char ProgName[32];
 char TmpSRamPath[64] ;
 char TmpSDPath[64];

 int S = Obji[5].dvalue;
 int R1 = Obji[6].dvalue;

Index 0 to 4 is used for passing system data for reading /writing static data.

 strcpy(TmpPath , Obji[0].strvalue);
 strcpy(PID , Obji[1].strvalue);
 strcpy(ProgName , Obji[2].strvalue);

 strcpy(TmpSRamPath , Obji[3].strvalue);
 strcpy(TmpSDPath ,Obji[4].strvalue);

 // Read Static data

 FILE * m_db ;
 DBStruct db_elem;
 char TmpStaticDataPath[128];
 strcpy(TmpStaticDataPath,TmpPath);
 strcat(TmpStaticDataPath,"/RS_");
 strcat(TmpStaticDataPath,ProgName);
 strcat(TmpStaticDataPath,"_");
 strcat(TmpStaticDataPath,PID);
 strcat(TmpStaticDataPath,".dat");

w w w . p b s c o n t r o l . c o m

Page 221

 pbsSoftLogic User’s Manual 2019

Reading Static data:

 m_db = fopen(TmpStaticDataPath, "rb");
 if(m_db==NULL)
 {
 // first time generate this file . User default value for static data

 }
 else
 {
 // Read Value of static data
 while (feof(m_db)==0)
 {
 fread(&db_elem, sizeof(db_elem), 1, m_db);
 if(strcmp(db_elem.name ,"SOld")==0)
 {
 SOld = atoi(db_elem.value);

 }
 if(strcmp(db_elem.name ,"R1Old")==0)
 {
 R1Old = atoi(db_elem.value);

 }

 if(strcmp(db_elem.name ,"Q1")==0)
 {
 Q1 = atoi(db_elem.value);
 }

 }
 fclose(m_db);
 }

In RS FB, old status of S, R 1 and Q1 value should be static.

You need to make all outputs in FB with static data as static tags.

w w w . p b s c o n t r o l . c o m

Page 222

 pbsSoftLogic User’s Manual 2019

Solve logic , map old values and write outputs :

 if((S==1)&&(SOld==0))
 {
 Q1 = 1;
 }

 if((R1==1)&&(R1Old==0))
 {
 Q1 = 0;
 }

 Objo[0].dvalue = Q1;

 // Map New Static data to old one
 SOld = S;
 R1Old = R1;

Write static data :

// Save Static data
 m_db = fopen(TmpStaticDataPath, "wb");

 strcpy(db_elem.name,"SOld");
 sprintf(db_elem.value,"%d",SOld);
 fwrite(&db_elem, sizeof(db_elem), 1, m_db);

 strcpy(db_elem.name,"R1Old");
 sprintf(db_elem.value,"%d",R1Old);
 fwrite(&db_elem, sizeof(db_elem), 1, m_db);

 strcpy(db_elem.name,"Q1");
 sprintf(db_elem.value,"%d",Q1);
 fwrite(&db_elem, sizeof(db_elem), 1, m_db);

 fclose(m_db);

In this stage you can compile FB. Eclipse will make libIEC11313.so file at release directory.

You should copy this file to controller. /home/pbsLX/fblib directory .

 w w w . p b s c o n t r o l . c o m

Page 223

 pbsSoftLogic User’s Manual 2019

You can use filezilla for transferring libIEC11313.so file to controller.

Please notice that transfer mode must be Binary in Filzilla .

Compiling UDF on Debian based RTUs :

When you make your UDF in previous step by Eclipse , it will make automatically all necessary make
files . You can use same files or make a new project based on Linux GCC (Not Crossed GCC) in Ubuntu .

If you use same Cross compiling project for debian you need to remove all prefixes about your Cross
compiler from make files transfer project to debian and make UDF by make command .

 w w w . p b s c o n t r o l . c o m

Page 224

 pbsSoftLogic User’s Manual 2019

20 – pbsSDK :User defined Communication Driver Development

pbsSDK is Software development kit for developing user defined communication protocols in
pbsSoftLogic .

If you want to communicate with devices with none standard communication protocols then you need
to develop pbsSoftlogic driver by pbsSDK.

For different targets, you need different tools and compilers:

- WinCE: Visual studio 2005 with installed SDK for your hardware. DLL Module.
- Embedded Linux: Eclipse IDE and tool chain for your hardware. Loadable Library SO Module.
- Win32 : Visual studio 2008/2010 . DLL Module

Open project options in project menu. Define new I/O driver and select pbsSDK from driver list.

Suppose name of driver is XBus_IO and it has instance number 2.

 w w w . p b s c o n t r o l . c o m

Page 225

 pbsSoftLogic User’s Manual 2019

You can define unlimited communication protocols by pbsSDK, but only 8 different instances can work
on a controller. Suppose in a project you need following driver configuration:

- XBus_IO Instance = 1
- XBus_IO Instance = 2
- YBus_IO Instance = 3
- YBus_IO Instance = 4
- ZBus_IO Instance = 5

XBus , YBus and ZBus are developed based on pbsSDK interface and all of them should have unique
Instance number . Following configuration is not correct:

- XBus_IO Instance = 1
- XBus_IO Instance = 2
- YBus_IO Instance = 1
- YBus_IO Instance = 2
- ZBus_IO Instance = 1

Click on “Make Driver” button. pbsSoftlogic will make new directory with XBus_IO in your project
and will make two configuration files .

- Options.xml: you should use this file for passing different parameters to your C DLL module.
- pbsSDKTags.xml: will use for defining communications tags for using in your logic.

All Tags has same double type in pbsSoftLogic kernel.

Options.xml

 w w w . p b s c o n t r o l . c o m

Page 226

 pbsSoftLogic User’s Manual 2019

DriverDirName , DriverLibName and Instance are not optional and all of them must be in options.xml file
. Do not remove them and just change their value.

DriverDirName : Name of Directory inside controller . All pbssoftLogic drivers are located at \drvlib\
directory.

Dnpsi{n} = dnp3 slave driver for instance number n

iecsi{n} = iec870-5-101/104 slave driver for instance number n

mmi{n} = modbus master driver for instance number n

msi{n} = modbus slave driver for instance number n

opcci{n} =OPC client driver for instance number n

For pbsSDK driver you can use any name and set name in DriverDirName Parameter. Without I and {n}

Suppose you will name XBus_IO Driver directory as XBus : DriverDirName = XBus

Then you should make a directory inside \drvlib\ with XBusi1 for instance 1 .

 w w w . p b s c o n t r o l . c o m

Page 227

 pbsSoftLogic User’s Manual 2019

DriverLibName: name of library inside \drvlib\XBusi1\ directory . Suppose your DLL name is XBUS.dll
then you should change its name to XBusi1.dll and copy it inside \drvlib\XBusi1

For instance 3 you need following directory and library name:

\drvlib\xbusi3\xbusi3.dll

Instance: Driver instance number.

Param Tags are used for passing parameters to your driver. You can define any number of parameters
and its format is under you control. pbsSoftLogic will pass all these parameters as string to runtime
kernel and to your driver . So you can consider any format for parameters and their value.

Suppose XBus driver wants to communicate with two Devices (xbus is master and devices are slave)
through RS485 and each device has unique ID .

You can set Parameters as following:

pbsSoftLogic runtime kernel inside controller will pass all parameters with their value as string to user
defined communication driver before initializing driver .

so you can easily detect communication parameters and device specifications insider your deriver.

You can find sample driver code for above configuration in \psbssoftlogic\sdk directory.

 w w w . p b s c o n t r o l . c o m

Page 228

 pbsSoftLogic User’s Manual 2019

pbsSDKtags.xml

You should define driver Tags in this file. As an example look at following tag definition:

Name format is under your control and you can select any format for tag name.

Address is Tag address and its type is int .

Init is Tag Init Value and its type is double.

You can define maximum 1024 Tags for each instance.

Driver C Interface for win32 and WinCE: for win32 and WinCE you need to make DLL module with
following interface:

1 - pbsSoftlogic runtime kernel will pass all parameters by pvsSetParamValueByName to your DLL
Module .

2 – Driver tags will add to DLL module by pbsAddTag Function. This function will return Tag handle that
runtime kernel will use it for Read/Write operation.

3 – Kernel will call pbsInit() function .

4 – Kernel will read /Write Tags in each Logic circle by pbsReadTag and pbsWriteTag functions.

You can find sample code for Win32 /WinCE and Linuc kernel at \pbssoftlogic\SDK directory.

 w w w . p b s c o n t r o l . c o m

Page 229

 pbsSoftLogic User’s Manual 2019

21 – Standard Function Blocks Definition

pbsSoftLogic has many ready and tested Function Block for easy and fast programming.

There are following groups in pbsSoftLogic:

 24.1 Math: Mathematics Function Groups

 24.2 Timers: Timer Function Blocks and Signal Generators

 24.3 Counters: Counters Function Blocks

 24.4 Logical: Logical Function Block Groups

 24.5 Process: High Level Process Function Blocks

 24.6 IEC11313: Standard Function Blocks based on IEC1131-3 standard

 24.7 Scheduling: Daily, Weekly, Monthly and Yearly Scheduling Function Blocks

 w w w . p b s c o n t r o l . c o m

Page 230

	1 – Introduction
	2 – pbsSoftLogic installation
	3 – Basic concepts
	4 – Function Block Programming Language
	5 – Quick Startup and Logic Simulation
	6 – Runtime Kernel for Linux, transferring License to Controller and working with Linux
	7 – Project Settings facilities
	8 – AMS-R3010 RTU Configuration
	9 – Modbus Master Configuration and integration with remote I/O Modules
	10 – Modbus Slave Configuration
	11 – DNP3 Slave Configuration
	12 – IEC870-5 Slave (101-104) Configuration
	13 – S7 Communication Driver Configuration
	14 – SQLite Configuration, RTU local data Archiving and Automatic synchronization with MS SQL Server
	15 – OPC UA Server configuration for RTU
	16 – GSP Client Driver Configuration
	17 – IEC870-5-103 Master Driver Configuration
	18 – OPC Client Driver Configuration for Win32 Target
	19 – User defined function block by Lua Scripting and C Language
	20 – pbsSDK :User defined Communication Driver Development
	21 – Standard Function Blocks Definition

